Global distribution of methane emissions: a comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments
-
Published:2021-09-24
Issue:18
Volume:21
Page:14159-14175
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Qu ZhenORCID, Jacob Daniel J., Shen Lu, Lu XiaoORCID, Zhang YuzhongORCID, Scarpelli Tia R., Nesser HannahORCID, Sulprizio Melissa P., Maasakkers Joannes D.ORCID, Bloom A. Anthony, Worden John R., Parker Robert J.ORCID, Delgado Alba L.ORCID
Abstract
Abstract. We evaluate the global atmospheric methane column retrievals from the new TROPOMI satellite instrument and apply them to a global inversion of
methane sources for 2019 at 2∘ × 2.5∘ horizontal resolution. We compare the results to an inversion using the sparser but
more mature GOSAT satellite retrievals and to a joint inversion using both TROPOMI and GOSAT. Validation of TROPOMI and GOSAT with TCCON
ground-based measurements of methane columns, after correcting for retrieval differences in prior vertical profiles and averaging kernels using the
GEOS-Chem chemical transport model, shows global biases of −2.7 ppbv for TROPOMI and −1.0 ppbv for GOSAT and regional biases of
6.7 ppbv for TROPOMI and 2.9 ppbv for GOSAT. Intercomparison of TROPOMI and GOSAT shows larger regional discrepancies exceeding
20 ppbv, mostly over regions with low surface albedo in the shortwave infrared where the TROPOMI retrieval may be biased. Our inversion uses
an analytical solution to the Bayesian inference of methane sources, thus providing an explicit characterization of error statistics and information
content together with the solution. TROPOMI has ∼ 100 times more observations than GOSAT, but error correlation on the
2∘ × 2.5∘ scale of the inversion and large spatial inhomogeneity in the number of observations make it less useful than
GOSAT for quantifying emissions at that scale. Finer-scale regional inversions would take better advantage of the TROPOMI data density. The TROPOMI
and GOSAT inversions show consistent downward adjustments of global oil–gas emissions relative to a prior estimate based on national inventory
reports to the United Nations Framework Convention on Climate Change but consistent increases in the south-central US and in Venezuela. Global
emissions from livestock (the largest anthropogenic source) are adjusted upward by TROPOMI and GOSAT relative to the EDGAR v4.3.2 prior estimate. We
find large artifacts in the TROPOMI inversion over southeast China, where seasonal rice emissions are particularly high but in phase with extensive
cloudiness and where coal emissions may be misallocated. Future advances in the TROPOMI retrieval together with finer-scale inversions and improved
accounting of error correlations should enable improved exploitation of TROPOMI observations to quantify and attribute methane emissions on the
global scale.
Funder
National Aeronautics and Space Administration National Centre for Earth Observation
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference77 articles.
1. Alexe, M., Bergamaschi, P., Segers, A., Detmers, R., Butz, A., Hasekamp, O., Guerlet, S., Parker, R., Boesch, H., Frankenberg, C., Scheepmaker, R. A., Dlugokencky, E., Sweeney, C., Wofsy, S. C., and Kort, E. A.: Inverse modelling of CH4 emissions for 2010–2011 using different satellite retrieval products from GOSAT and SCIAMACHY, Atmos. Chem. Phys., 15, 113–133, https://doi.org/10.5194/acp-15-113-2015, 2015. 2. Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z. R., Brandt, A. R., Davis, K. J., Herndon, S. C., Jacob, D. J., Karion, A., Kort, E. A., Lamb, B. K., Lauvaux, T., Maasakkers, J. D., Marchese, A. J., Omara, M., Pacala, S. W., Peischl, J., Robinson, A. L., Shepson, P. B., Sweeney, C., Townsend-Small, A., Wofsy, S. C., and Hamburg, S. P.:
Assessment of methane emissions from the U. S. oil and gas supply chain,
Science,
361, 186–188, https://doi.org/10.1126/science.aar7204, 2018. 3. Baray, S., Jacob, D. J., Massakkers, J. D., Sheng, J.-X., Sulprizio, M. P., Jones, D. B. A., Bloom, A. A., and McLaren, R.: Estimating 2010–2015 Anthropogenic and Natural Methane Emissions in Canada using ECCC Surface and GOSAT Satellite Observations, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-1195, in review, 2021. 4. Bloom, A. A., Bowman, K. W., Lee, M., Turner, A. J., Schroeder, R., Worden, J. R., Weidner, R., McDonald, K. C., and Jacob, D. J.: A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0), Geosci. Model Dev., 10, 2141–2156, https://doi.org/10.5194/gmd-10-2141-2017, 2017. 5. Brasseur, G. P. and Jacob, D. J.:
Modeling of Atmospheric Chemistry,
in: Modeling of Atmospheric Chemistry,
Cambridge University Press, Cambridge, i-i, 2017.
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|