Development of ozone reactivity scales for volatile organic compounds in a Chinese megacity

Author:

Zhang Yingnan,Xue Likun,Carter William P. L.,Pei Chenglei,Chen Tianshu,Mu Jiangshan,Wang Yujun,Zhang Qingzhu,Wang Wenxing

Abstract

Abstract. We developed incremental reactivity (IR) scales for 116 volatile organic compounds (VOCs) in a Chinese megacity (Guangzhou) and elucidated their application in calculating the ozone (O3) formation potential (OFP) in China. Two sets of model inputs (emission-based and observation-based) were designed to localize the IR scales in Guangzhou using the Master Chemical Mechanism (MCM) box model and were also compared with those of the US. The two inputs differed in how primary pollutant inputs in the model were derived, with one based on emission data and the other based on observed pollutant levels, but the maximum incremental reactivity (MIR) scales derived from them were fairly similar. The IR scales showed a strong dependence on the chemical mechanism (MCM vs. Statewide Air Pollution Research Center), and a higher consistency was found in IR scales between China and the US using a similar chemical mechanism. With a given chemical mechanism, the MIR scale for most VOCs showed a relatively small dependence on environmental conditions. However, when the NOx availability decreased, the IR scales became more sensitive to environmental conditions and the discrepancy between the IR scales obtained from emission-based and observation-based inputs increased, thereby implying the necessity to localize IR scales over mixed-limited or NOx-limited areas. This study provides recommendations for the application of IR scales, which has great significance for VOC control in China and other countries suffering from serious O3 air pollution.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Jiangsu Collaborative Innovation Center for Climate Change

Taishan Scholar Foundation of Shandong Province

Government of Guangdong Province

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3