Development of a new emission reallocation method for industrial sources in China

Author:

Lam Yun FatORCID,Cheung Chi Chiu,Zhang XuguoORCID,Fu Joshua S.ORCID,Fung Jimmy Chi HungORCID

Abstract

Abstract. An accurate emission inventory is a crucial part of air pollution management and is essential for air quality modelling. One source in an emission inventory, an industrial source, has been known with high uncertainty in both location and magnitude in China. In this study, a new reallocation method based on blue-roof industrial buildings was developed to replace the conventional method of using population density for the Chinese emission development. The new method utilized the zoom level 14 satellite imagery (i.e. Google®) and processed it based on hue, saturation, and value (HSV) colour classification to derive new spatial surrogates for province-level reallocation, providing more realistic spatial patterns of industrial PM2.5 and NO2 emissions in China. The WRF-CMAQ-based PATH-2016 model system was then applied with the new processed industrial emission input in the MIX inventory to simulate air quality in the Greater Bay Area (GBA) area (formerly called Pearl River Delta, PRD). In the study, significant root mean square error (RMSE) improvement was observed in both summer and winter scenarios in 2015 when compared with the population-based approach. The average RMSE reductions (i.e. 75 stations) of PM2.5 and NO2 were found to be 11 µg m−3 and 3 ppb, respectively. Although the new method for allocating industrial sources did not perform as well as the point- and area-based industrial emissions obtained from the local bottom-up dataset, it still showed a large improvement over the existing population-based method. In conclusion, this research demonstrates that the blue-roof industrial allocation method can effectively identify scattered industrial sources in China and is capable of downscaling the industrial emissions from regional to local levels (i.e. 27 to 3 km resolution), overcoming the technical hurdle of ∼ 10 km resolution from the top-down or bottom-up emission approach under the unified framework of emission calculation.

Funder

Innovation and Technology Fund

Research Grants Council, University Grants Committee

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3