Secular change in atmospheric Ar∕N<sub>2</sub> and its implications for ocean heat uptake and Brewer–Dobson circulation

Author:

Ishidoya ShigeyukiORCID,Sugawara Satoshi,Tohjima Yasunori,Goto Daisuke,Ishijima Kentaro,Niwa Yosuke,Aoki NobuyukiORCID,Murayama Shohei

Abstract

Abstract. Systematic measurements of the atmospheric Ar∕N2 ratio have been made at ground-based stations in Japan and Antarctica since 2012. Clear seasonal cycles of the Ar∕N2 ratio with summertime maxima were found at middle- to high-latitude stations, with seasonal amplitudes increasing with increasing latitude. Eight years of the observed Ar∕N2 ratio at Tsukuba (TKB) and Hateruma (HAT), Japan, showed interannual variations in phase with the observed variations in the global ocean heat content (OHC). We calculated secularly increasing trends of 0.75 ± 0.30 and 0.89 ± 0.60 per meg per year from the Ar∕N2 ratio observed at TKB and HAT, respectively, although these trend values are influenced by large interannual variations. In order to examine the possibility of the secular trend in the surface Ar∕N2 ratio being modified significantly by the gravitational separation in the stratosphere, two-dimensional model simulations were carried out by arbitrarily modifying the mass stream function in the model to simulate either a weakening or an enhancement of the Brewer–Dobson circulation (BDC). The secular trend of the Ar∕N2 ratio at TKB, corrected for gravitational separation under the assumption of weakening (enhancement) of BDC simulated by the 2-D model, was 0.60 ± 0.30 (0.88 ± 0.30) per meg per year. By using a conversion factor of 3.5 × 10−23 per meg per joule by assuming a one-box ocean with a temperature of 3.5 ∘C, average OHC increase rates of 17.1 ± 8.6 ZJ yr−1 and 25.1 ± 8.6 ZJ yr−1 for the period 2012–2019 were estimated from the corrected secular trends of the Ar∕N2 ratio for the weakened- and enhanced-BDC conditions, respectively. Both OHC increase rates from the uncorrected- and weakened-BDC secular trends of the Ar∕N2 ratio are consistent with 12.2 ± 1.2 ZJ yr−1 reported by ocean temperature measurements, while that from the enhanced-BDC is outside of the range of the uncertainties. Although the effect of the actual atmospheric circulation on the Ar∕N2 ratio is still unclear and longer-term observations are needed to reduce uncertainty of the secular trend of the surface Ar∕N2 ratio, the analytical results obtained in the present study imply that the surface Ar∕N2 ratio is an important tracer for detecting spatiotemporally integrated changes in OHC and BDC.

Funder

Japan Society for the Promotion of Science

Global Environment Bureau

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3