The driving factors of new particle formation and growth in the polluted boundary layer
-
Published:2021-09-27
Issue:18
Volume:21
Page:14275-14291
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Xiao Mao, Hoyle Christopher R., Dada LubnaORCID, Stolzenburg DominikORCID, Kürten Andreas, Wang MingyiORCID, Lamkaddam Houssni, Garmash OlgaORCID, Mentler BernhardORCID, Molteni UgoORCID, Baccarini AndreaORCID, Simon MarioORCID, He Xu-ChengORCID, Lehtipalo KatrianneORCID, Ahonen Lauri R.ORCID, Baalbaki RimaORCID, Bauer Paulus S.ORCID, Beck LisaORCID, Bell David, Bianchi FedericoORCID, Brilke SophiaORCID, Chen DexianORCID, Chiu Randall, Dias António, Duplissy JonathanORCID, Finkenzeller HenningORCID, Gordon HamishORCID, Hofbauer Victoria, Kim ChanghyukORCID, Koenig Theodore K.ORCID, Lampilahti Janne, Lee Chuan PingORCID, Li ZijunORCID, Mai Huajun, Makhmutov Vladimir, Manninen Hanna E., Marten RubyORCID, Mathot Serge, Mauldin Roy L., Nie Wei, Onnela Antti, Partoll Eva, Petäjä TuukkaORCID, Pfeifer JoschkaORCID, Pospisilova Veronika, Quéléver Lauriane L. J., Rissanen MattiORCID, Schobesberger SiegfriedORCID, Schuchmann Simone, Stozhkov Yuri, Tauber ChristianORCID, Tham Yee JunORCID, Tomé António, Vazquez-Pufleau Miguel, Wagner Andrea C., Wagner Robert, Wang YonghongORCID, Weitz Lena, Wimmer DanielaORCID, Wu Yusheng, Yan ChaoORCID, Ye PenglinORCID, Ye QingORCID, Zha QiaozhiORCID, Zhou Xueqin, Amorim Antonio, Carslaw KenORCID, Curtius JoachimORCID, Hansel ArminORCID, Volkamer RainerORCID, Winkler Paul M., Flagan Richard C.ORCID, Kulmala MarkkuORCID, Worsnop Douglas R., Kirkby JasperORCID, Donahue Neil M.ORCID, Baltensperger Urs, El Haddad Imad, Dommen JosefORCID
Abstract
Abstract. New particle formation (NPF) is a significant source of atmospheric
particles, affecting climate and air quality. Understanding the mechanisms
involved in urban aerosols is important to develop effective mitigation
strategies. However, NPF rates reported in the polluted boundary layer span
more than 4 orders of magnitude, and the reasons behind this variability are the subject of intense scientific debate. Multiple atmospheric vapours have been
postulated to participate in NPF, including sulfuric acid, ammonia, amines
and organics, but their relative roles remain unclear. We investigated NPF
in the CLOUD chamber using mixtures of anthropogenic vapours that simulate
polluted boundary layer conditions. We demonstrate that NPF in polluted
environments is largely driven by the formation of sulfuric acid–base
clusters, stabilized by the presence of amines, high ammonia concentrations
and lower temperatures. Aromatic oxidation products, despite their extremely
low volatility, play a minor role in NPF in the chosen urban environment but
can be important for particle growth and hence for the survival of newly
formed particles. Our measurements quantitatively account for NPF in highly
diverse urban environments and explain its large observed variability. Such
quantitative information obtained under controlled laboratory conditions
will help the interpretation of future ambient observations of NPF rates in
polluted atmospheres.
Funder
H2020 European Research Council FP7 Ideas: European Research Council European Research Council Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung National Science Foundation Russian Academy of Sciences Austrian Science Fund Academy of Finland
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference55 articles.
1. Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K.,
Kupiainen-Määttä, O., Praplan, A. P., Adamov, A., Amorim, A.,
Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M.,
Downard, A., Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin,
A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen,
T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A.,
Kurtén, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M.,
Leppä, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J.,
Nieminen, T., Olenius, T., Onnela, A., Petäjä, T., Riccobono, F.,
Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D.,
Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld, J. H., Simon, M.,
Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Tröstl, J.,
Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A.,
Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P.,
Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U.,
Worsnop, D. R., Vehkamäki, H., and Kirkby, J.: Molecular understanding of
sulphuric acid-amine particle nucleation in the atmosphere, Nature,
502, 359–363, https://doi.org/10.1038/nature12663, 2013. 2. Baker, A. K., Beyersdorf, A. J., Doezema, L. A., Katzenstein, A., Meinardi,
S., Simpson, I. J., Blake, D. R., and Sherwood Rowland, F.: Measurements of
nonmethane hydrocarbons in 28 United States cities, Atmos. Environ., 42, 170–182,
https://doi.org/10.1016/j.atmosenv.2007.09.007, 2008. 3. Boynard, A., Borbon, A., Leonardis, T., Barletta, B., Meinardi, S., Blake,
D. R., and Locoge, N.: Spatial and seasonal variability of measured
anthropogenic non-methane hydrocarbons in urban atmospheres: Implication on
emission ratios, Atmos. Environ., 82, 258–267, https://doi.org/10.1016/j.atmosenv.2013.09.039, 2014. 4. Brean, J., Beddows, D. C. S., Shi, Z., Temime-Roussel, B., Marchand, N.,
Querol, X., Alastuey, A., Minguillón, M. C., and Harrison, R. M.:
Molecular insights into new particle formation in Barcelona, Spain, Atmos.
Chem. Phys., 20, 10029–10045, https://doi.org/10.5194/acp-20-10029-2020, 2020. 5. Breitenlechner, M., Fischer, L., Hainer, M., Heinritzi, M., Curtius, J., and
Hansel, A.: PTR3: An instrument for studying the lifecycle of reactive
organic carbon in the atmosphere, Anal. Chem., 89, 5824–5831,
https://doi.org/10.1021/acs.analchem.6b05110, 2017.
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|