Increased new particle yields with largely decreased probability of survival to CCN size at the summit of Mt. Tai under reduced SO<sub>2</sub> emissions
-
Published:2021-01-29
Issue:2
Volume:21
Page:1305-1323
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Zhu Yujiao, Xue Likun, Gao Jian, Chen JianminORCID, Li Hongyong, Zhao Yong, Guo Zhaoxin, Chen Tianshu, Wen Liang, Zheng Penggang, Shan YeORCID, Wang XinfengORCID, Wang TaoORCID, Yao Xiaohong, Wang Wenxing
Abstract
Abstract. Because anthropogenic sulfur dioxide (SO2) emissions have
decreased considerably in the last decade, PM2.5 pollution in China has
been alleviated to some extent. However, the effects of reduced SO2 on
the particle number concentrations and subsequent contributions of grown new
particles to cloud condensation nuclei (CCN) populations, particularly at
high altitudes with low aerosol number loadings, are poorly understood. In
contrast, the increase in provincial forest areas in China with rapid
afforestation over the last few decades expectedly increases the
biogenic emissions of volatile organic compounds and their oxidized products
as nucleating precursors therein. In this study, we evaluated the
campaign-based measurements made at the summit of Mt. Tai (1534 m a.s.l.)
from 2007 to 2018. With the decrease in SO2 mixing ratios from 15 ± 13 ppb in 2007 to 1.6 ± 1.6 ppb in 2018, the apparent
formation rate (FR) of new particles and the net maximum increase in the
nucleation-mode particle number concentration (NMINP) in the spring campaign
of 2018 was 2- to 3-fold higher than those in the spring campaign of 2007 with
almost the same occurrence frequency of new particle formation (NPF) events.
In contrast, the campaign-based comparison showed that the occurrence
frequency, in which the maximum geometric median diameter of the grown new
particles (Dpgmax) was > 50 nm, decreased considerably from
43 %–78 % of the NPF events before 2015 to < 12 % in
2017–2018. Assuming > 50 nm as a CCN threshold size at high
supersaturations, the observed net CCN production decreased from
3.7 × 103 cm−3 (on average) in the five campaigns before
2015 to 1.0 × 103 cm−3 (on average) in the two campaigns
in 2017–2018. We argue that the increases in the apparent FR and NMINP are
mainly determined by the availability of organic precursors that participate
in nucleation and initial growth, whereas the decrease in the growth
probability is caused by the reduced emissions of anthropogenic precursors.
However, large uncertainties still exist because of a lack of data on the
chemical composition of these smaller particles.
Funder
National Natural Science Foundation of China
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference81 articles.
1. Apsokardu, M. J. and Johnston, M. V.: Nanoparticle growth by particle-phase chemistry, Atmos. Chem. Phys., 18, 1895–1907, https://doi.org/10.5194/acp-18-1895-2018, 2018. 2. Asmi, E., Kivekäs, N., Kerminen, V.-M., Komppula, M., Hyvärinen, A.-P., Hatakka, J., Viisanen, Y., and Lihavainen, H.: Secondary new particle formation in Northern Finland Pallas site between the years 2000 and 2010, Atmos. Chem. Phys., 11, 12959–12972, https://doi.org/10.5194/acp-11-12959-2011, 2011. 3. Burkart, J., Hodshire, A. L., Mungall, E. L., Pierce, J. R., Collins, D. B., Ladino, L. A., Lee, A. K., Irish, V., Wentzell, J. J., Liggio, J., and Papakyriakou, T.: Organic condensation and particle growth to CCN sizes in the summertime marine Arctic is driven by materials more semivolatile than at continental sites, Geophys. Res. Lett., 44, 10725–10734, https://doi.org/10.1002/2017GL075671, 2017. 4. Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A.,
Hansen, J. E., and Hofmann, D. J.: Climate Forcing by Anthropogenic
Aerosols, Science, 255, 423–430, 1992. 5. Chen, C., Park, T., Wang, X. H., Piao, S. L., Xu, B. D., Chaturvedi, R.
K., Fuchs, R., Brovkin, V., Ciais, P., Fensholt, R., Tommervik, H., Bala,
G., Zhu, Z. C., Nemani, R. R., and Myneni, R. B.: China and India lead in
greening of the world through land-use management, Nat. Sustain., 2,
122–129, 2019.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|