Measurement report: Vertical distribution of biogenic and anthropogenic secondary organic aerosols in the urban boundary layer over Beijing during late summer
-
Published:2021-09-01
Issue:17
Volume:21
Page:12949-12963
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Ren Hong, Hu WeiORCID, Wei LianfangORCID, Yue SiyaoORCID, Zhao Jian, Li LinjieORCID, Wu Libin, Zhao Wanyu, Ren Lujie, Kang Mingjie, Xie Qiaorong, Su Sihui, Pan XiaoleORCID, Wang Zifa, Sun YeleORCID, Kawamura KimitakaORCID, Fu PingqingORCID
Abstract
Abstract. Secondary organic aerosol (SOA) plays a significant role in atmospheric
chemistry. However, little is known about the vertical profiles of SOA in the
urban boundary layer (UBL). This knowledge gap constrains the SOA simulation
in chemical transport models. Here, the aerosol samples were synchronously
collected at 8, 120, and 260 m based on a 325 m meteorological
tower in Beijing from 15 August to 10 September 2015. Strict emission controls
were implemented during this period for the 2015 China Victory Day
parade. Here, we observed that the total concentration of biogenic SOA tracers
increased with height. The fraction of SOA from isoprene oxidation increased
with height, whereas the fractions of SOA from monoterpenes and sesquiterpenes
decreased, and 2,3-dihydroxy-4-oxopentanoic acid (DHOPA), a tracer of
anthropogenic SOA from toluene oxidation, also increased with height. The
complicated vertical profiles of SOA tracers highlighted the need to
characterize SOA within the UBL. The mass concentration of estimated secondary
organic carbon (SOC) ranged from 341 to 673 ng C m−3. The
increase in the estimated SOC fractions from isoprene and toluene with height
was found to be more related to regional transport, whereas the decrease in the
estimated SOC from monoterpenes and sesquiterpene with height was more subject
to local emissions. Emission controls during the parade reduced SOC by
4 %–35 %, with toluene SOC decreasing more than the other SOC. This
study demonstrates that vertical distributions of SOA within the UBL are
complex, and the vertical profiles of SOA concentrations and sources should be
considered in field and modeling studies in the future.
Funder
National Key Research and Development Program of China National Natural Science Foundation of China
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference79 articles.
1. Al-Naiema, I. M. and Stone, E. A.: Evaluation of anthropogenic secondary organic aerosol tracers from aromatic hydrocarbons, Atmos. Chem. Phys., 17, 2053–2065, https://doi.org/10.5194/acp-17-2053-2017, 2017. 2. An, Z., Huang, R., Zhang, R., Tie, X., Lia, G., Caoa, J., Zhou, W., Shi, Z., Han, Y., Guh, Z., and Ji, Y.: Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes, P. Natl. Acad. Sci. USA., 116, 8657–8666, https://doi.org/10.1073/pnas.1900125116, 2019. 3. Andreae, M. O., Acevedo, O. C., Araùjo, A., Artaxo, P., Barbosa, C. G. G., Barbosa, H. M. J., Brito, J., Carbone, S., Chi, X., Cintra, B. B. L., da Silva, N. F., Dias, N. L., Dias-Júnior, C. Q., Ditas, F., Ditz, R., Godoi, A. F. L., Godoi, R. H. M., Heimann, M., Hoffmann, T., Kesselmeier, J., Könemann, T., Krüger, M. L., Lavric, J. V., Manzi, A. O., Lopes, A. P., Martins, D. L., Mikhailov, E. F., Moran-Zuloaga, D., Nelson, B. W., Nölscher, A. C., Santos Nogueira, D., Piedade, M. T. F., Pöhlker, C., Pöschl, U., Quesada, C. A., Rizzo, L. V., Ro, C.-U., Ruckteschler, N., Sá, L. D. A., de Oliveira Sá, M., Sales, C. B., dos Santos, R. M. N., Saturno, J., Schöngart, J., Sörgel, M., de Souza, C. M., de Souza, R. A. F., Su, H., Targhetta, N., Tóta, J., Trebs, I., Trumbore, S., van Eijck, A., Walter, D., Wang, Z., Weber, B., Williams, J., Winderlich, J., Wittmann, F., Wolff, S., and Yáñez-Serrano, A. M.: The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols, Atmos. Chem. Phys., 15, 10723–10776, https://doi.org/10.5194/acp-15-10723-2015, 2015. 4. Barrie, L. A.: Arctic air pollution: an overview of current knowledge, Atmos. Environ., 20, 643–663, 1986. 5. Bates, K. H. and Jacob, D. J.: A new model mechanism for atmospheric oxidation of isoprene: global effects on oxidants, nitrogen oxides, organic products, and secondary organic aerosol, Atmos. Chem. Phys., 19, 9613–9640, https://doi.org/10.5194/acp-19-9613-2019, 2019.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|