A sulfur dioxide Covariance-Based Retrieval Algorithm (COBRA): application to TROPOMI reveals new emission sources

Author:

Theys Nicolas,Fioletov VitaliORCID,Li Can,De Smedt IsabelleORCID,Lerot ChristopheORCID,McLinden ChrisORCID,Krotkov NickolayORCID,Griffin DeboraORCID,Clarisse LievenORCID,Hedelt PascalORCID,Loyola DiegoORCID,Wagner Thomas,Kumar VinodORCID,Innes AntjeORCID,Ribas Roberto,Hendrick François,Vlietinck Jonas,Brenot HuguesORCID,Van Roozendael Michel

Abstract

Abstract. Sensitive and accurate detection of sulfur dioxide (SO2) from space is important for monitoring and estimating global sulfur emissions. Inspired by detection methods applied in the thermal infrared, we present here a new scheme to retrieve SO2 columns from satellite observations of ultraviolet back-scattered radiances. The retrieval is based on a measurement error covariance matrix to fully represent the SO2-free radiance variability, so that the SO2 slant column density is the only retrieved parameter of the algorithm. We demonstrate this approach, named COBRA, on measurements from the TROPOspheric Monitoring Instrument (TROPOMI) aboard the Sentinel-5 Precursor (S-5P) satellite. We show that the method reduces significantly both the noise and biases present in the current TROPOMI operational DOAS SO2 retrievals. The performance of this technique is also benchmarked against that of the principal component algorithm (PCA) approach. We find that the quality of the data is similar and even slightly better with the proposed COBRA approach. The ability of the algorithm to retrieve SO2 accurately is further supported by comparison with ground-based observations. We illustrate the great sensitivity of the method with a high-resolution global SO2 map, considering 2.5 years of TROPOMI data. In addition to the known sources, we detect many new SO2 emission hotspots worldwide. For the largest sources, we use the COBRA data to estimate SO2 emission rates. Results are comparable to other recently published TROPOMI-based SO2 emissions estimates, but the associated uncertainties are significantly lower than with the operational data. Next, for a limited number of weak sources, we demonstrate the potential of our data for quantifying SO2 emissions with a detection limit of about 8 kt yr−1, a factor of 4 better than the emissions derived from the Ozone Monitoring Instrument (OMI). We anticipate that the systematic use of our TROPOMI COBRA SO2 column data set at a global scale will allow missing sources to be identified and quantified and help improve SO2 emission inventories.

Funder

European Space Agency

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3