Comment on “Review of experimental studies of secondary ice production” by Korolev and Leisner (2020)

Author:

Phillips Vaughan T. J.,Yano Jun-Ichi,Deshmukh AkashORCID,Waman DeepakORCID

Abstract

Abstract. This is a comment on the review by Korolev and Leisner (2020, hereafter KL2020). The only two laboratory/field studies ever to measure the breakup in ice–ice collisions for in-cloud conditions were negatively criticised by KL2020, as were our subsequent theoretical and modelling studies informed by both studies. First, hypothetically, even without any further laboratory experiments, such theoretical and modelling studies would continue to be possible, based on classical mechanics and statistical physics. They are not sensitive to the accuracy of lab data for typical situations, partly because the nonlinear explosive growth of ice concentrations continues until some maximum concentration is reached. To a degree, the same final concentration is expected regardless of the fragment number per collision. Second, there is no evidence that both lab/field observational studies characterising fragmentation in ice–ice collisions are either mutually conflicting or erroneous such that they cannot be used to represent this breakup in numerical models, contrary to the review. The fact that the ice spheres of one experiment were hail sized (2 cm) is not a problem if a universal theoretical formulation, such as ours, with fundamental dependencies, is informed by it. Although both lab/field studies involved head-on collisions, rotational kinetic energy for all collisions generally is only a small fraction of the initial collision kinetic energy (CKE) anyway. Although both lab/field experiments involved fixed targets, that is not a problem since the fixing of the target is represented via CKE in any energy-based formulation such as ours. Finally, scaling analysis suggests that the breakup of ice during sublimation can make a significant contribution to ice enhancement in clouds, again contrary to the impression given by the review.

Funder

U.S. Department of Energy

Svenska Forskningsrådet Formas

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference22 articles.

1. Bridges, F. G., Hatzes, A. P., and Lin, D. N. C.: Structure, stability and evolution of Saturn's rings, Nature, 309, 333–335, 1984.

2. Dong, Y., Oraltay, R. G., and Hallett, J.: Ice particle generation during evaporation, Atmos. Res., 32, 45–53, 1994.

3. Eidevåg, T., Thomson, E. S., Solien S., Casselgren J., and Rasmuson, A.: Collisional damping of spherical ice particles, Powder Technol., 383, 318–327, 2021.

4. Hatzes, A. P., Bridges, F., and Lin, D. N. C.: Collisional properties of ice spheres at low impact velocities, Mon. Not. R. Astron. Soc., 231, 1091–1115, 1988

5. Korolev, A. and Leisner, T.: Review of experimental studies of secondary ice production, Atmos. Chem. Phys., 20, 11767–11797, https://doi.org/10.5194/acp-20-11767-2020, 2020.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3