Experimental investigation of the stable water isotope distribution in an Alpine lake environment (L-WAIVE)

Author:

Chazette PatrickORCID,Flamant CyrilleORCID,Sodemann HaraldORCID,Totems JulienORCID,Monod Anne,Dieudonné Elsa,Baron AlexandreORCID,Seidl AndrewORCID,Steen-Larsen Hans Christian,Doira Pascal,Durand Amandine,Ravier SylvainORCID

Abstract

Abstract. In order to gain understanding on the vertical structure of atmospheric water vapour above mountain lakes and to assess its link with the isotopic composition of the lake water and with small-scale dynamics (i.e. valley winds, thermal convection above complex terrain), the L-WAIVE (Lacustrine-Water vApor Isotope inVentory Experiment) field campaign was conducted in the Annecy valley in the French Alps during 10 d in June 2019. This field campaign was based on an original experimental synergy between a suite of ground-based, boat-borne, and two ultra-light aircraft (ULA) measuring platforms implemented to characterize the thermodynamic and isotopic composition above and in the lake. A cavity ring-down spectrometer and an in-cloud liquid water collector were deployed aboard one of the ULA to characterize the vertical distribution of the main stable water isotopes (H216O, H218O and H2H16O) both in the air and in shallow cumulus clouds. The temporal evolution of the meteorological structures of the low troposphere was derived from an airborne Rayleigh–Mie lidar (embarked on a second ULA), a ground-based Raman lidar, and a wind lidar. ULA flight patterns were repeated several times per day to capture the diurnal evolution as well as the variability associated with the different weather events encountered during the field campaign, which influenced the humidity field, cloud conditions, and slope wind regimes in the valley. In parallel, throughout the campaign, liquid water samples of rain, at the air–lake water interface, and at 2 m depth in the lake were taken. A significant variability of the isotopic composition was observed along time, depending on weather conditions, linked to the transition from the valley boundary layer towards the free troposphere, the valley wind intensity, and the vertical thermal stability. Thus, significant gradients of isotopic content have been revealed at the transition to the free troposphere, at altitudes between 2.5 and 3.5 km. The influence of the lake on the atmosphere isotopic composition is difficult to isolate from other contributions, especially in the presence of thermal instabilities and valley winds. Nevertheless, such an effect appears to be detectable in a layer of about 300 m thickness above the lake in light wind conditions. We also noted similar isotopic compositions in cloud drops and rainwater.

Funder

Agence Nationale de la Recherche

Norges Forskningsråd

European Research Council

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3