Regulation of inorganic carbon acquisition in a red tide alga (<i>Skeletonema costatum</i>): the importance of phosphorus availability

Author:

Gao Guang,Xia Jianrong,Yu Jinlan,Fan Jiale,Zeng Xiaopeng

Abstract

Abstract. Skeletonema costatum is a common bloom-forming diatom and encounters eutrophication and severe carbon dioxide (CO2) limitation during red tides. However, little is known regarding the role of phosphorus (P) in modulating inorganic carbon acquisition in S. costatum, particularly under CO2 limitation conditions. We cultured S. costatum under five phosphate levels (0.05, 0.25, 1, 4, 10 µmol L−1) and then treated it with two CO2 conditions (2.8 and 12.6 µmol L−1) for 2 h. The lower CO2 reduced net photosynthetic rate at lower phosphate levels (< 4 µmol L−1) but did not affect it at higher phosphate levels (4 and 10 µmol L−1). In contrast, the lower CO2 induced a higher dark respiration rate at lower phosphate levels (0.05 and 0.25 µmol L−1) and did not affect it at higher phosphate levels (> 1 µmol L−1). The lower CO2 did not change relative electron transport rate (rETR) at lower phosphate levels (0.05 and 0.25 µmol L−1) and increased it at higher phosphate levels (> 1 µmol L−1). Photosynthetic CO2 affinity (1/K0.5) increased with phosphate levels. The lower CO2 did not affect photosynthetic CO2 affinity at 0.05 µmol L−1 phosphate but enhanced it at the other phosphate levels. Activity of extracellular carbonic anhydrase was dramatically induced by the lower CO2 in phosphate-replete conditions (> 0.25 µmol L−1) and the same pattern also occurred for redox activity of the plasma membrane. Direct bicarbonate (HCO3-) use was induced when phosphate concentration was more than 1 µmol L−1. These findings indicate P enrichment could enhance inorganic carbon acquisition and thus maintain the photosynthesis rate in S. costatum grown under CO2-limiting conditions via increasing activity of extracellular carbonic anhydrase and facilitating direct HCO3- use. This study sheds light on how bloom-forming algae cope with carbon limitation during the development of red tides.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3