Deep-sea benthic communities and oxygen fluxes in the Arctic Fram Strait controlled by sea-ice cover and water depth

Author:

Hoffmann RalfORCID,Braeckman UlrikeORCID,Hasemann Christiane,Wenzhöfer FrankORCID

Abstract

Abstract. Arctic Ocean surface sea-ice conditions are linked with the deep sea benthic oxygen fluxes via a cascade of interdependencies across ecosystem components such as primary production, food supply, activity of the benthic community, and their functions. Additionally, each ecosystem component is influenced by abiotic factors such as light availability, temperature, water depth, and grain size structure. In this study, we investigated the coupling between surface sea-ice conditions and deep-sea benthic remineralization processes through a cascade of interdependencies in the Fram Strait. We measured sea-ice concentrations, a variety of different sediment characteristics, benthic community parameters, and oxygen fluxes at 12 stations of the LTER HAUSGARTEN observatory, Fram Strait, at water depths of 275–2500 m. Our investigations reveal that the Fram Strait is bisected into two long-lasting and stable regions: (i) a permanently and highly sea-ice-covered area and (ii) a seasonally and low sea-ice-covered area. Within the Fram Strait ecosystem, sea-ice concentration and water depth are two independent abiotic factors, controlling the deep-sea benthos. Sea-ice concentration correlated with the available food and water depth with the oxygen flux. In addition, both abiotic factors sea-ice concentration and water depth correlate with the macrofauna biomass. However, at water depths > 1500 m the influence of the surface sea-ice cover is minimal with water depth becoming more dominant. Benthic remineralization across the Fram Strait on average is  ∼ 1 mmol C m−2 d−1. Our data indicate that the portion of newly produced carbon that is remineralized by the benthos is 5 % in the seasonally low sea-ice-covered eastern part of Fram Strait but can be 14 % in the permanently high sea-ice-covered western part of Fram Strait. Here, by comparing a permanently sea-ice-covered area with a seasonally sea-ice-covered area, we discuss a potential scenario for the deep-sea benthic ecosystem in the future Arctic Ocean, in which an increased surface primary production may lead to increasing benthic remineralization at water depths < 1500 m.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Polar Meiofauna—Antipoles or Parallels?;New Horizons in Meiobenthos Research;2023

2. Quantification of a subsea CO2 release with lab-on-chip sensors measuring benthic gradients;International Journal of Greenhouse Gas Control;2021-09

3. Traits and drivers: Functioning of macrobenthic communities across the deep Fram Strait (Arctic Ocean);Ecological Indicators;2021-04

4. Community structure and productivity of Arctic benthic fauna across depth gradients during springtime;Deep Sea Research Part I: Oceanographic Research Papers;2021-04

5. Climate-driven benthic invertebrate activity and biogeochemical functioning across the Barents Sea polar front;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2020-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3