On the suitability of current atmospheric reanalyses for regional warming studies over China

Author:

Zhou ChunlüeORCID,He Yanyi,Wang KaicunORCID

Abstract

Abstract. Reanalyses are widely used because they add value to routine observations by generating physically or dynamically consistent and spatiotemporally complete atmospheric fields. Existing studies include extensive discussions of the temporal suitability of reanalyses in studies of global change. This study adds to this existing work by investigating the suitability of reanalyses in studies of regional climate change, in which land–atmosphere interactions play a comparatively important role. In this study, surface air temperatures (Ta) from 12 current reanalysis products are investigated; in particular, the spatial patterns of trends in Ta are examined using homogenized measurements of Ta made at  ∼  2200 meteorological stations in China from 1979 to 2010. The results show that  ∼  80 % of the mean differences in Ta between the reanalyses and the in situ observations can be attributed to the differences in elevation between the stations and the model grids. Thus, the Ta climatologies display good skill, and these findings rebut previous reports of biases in Ta. However, the biases in theTa trends in the reanalyses diverge spatially (standard deviation  =  0.15–0.30 °C decade−1 using 1°  ×  1° grid cells). The simulated biases in the trends in Ta correlate well with those of precipitation frequency, surface incident solar radiation (Rs) and atmospheric downward longwave radiation (Ld) among the reanalyses (r = −0.83, 0.80 and 0.77; p < 0.1) when the spatial patterns of these variables are considered. The biases in the trends in Ta over southern China (on the order of −0.07 °C decade−1) are caused by biases in the trends in Rs, Ld and precipitation frequency on the order of 0.10, −0.08 and −0.06 °C decade−1, respectively. The biases in the trends in Ta over northern China (on the order of −0.12 °C decade−1) result jointly from those in Ld and precipitation frequency. Therefore, improving the simulation of precipitation frequency and Rs helps to maximize the signal component corresponding to regional climate. In addition, the analysis of Ta observations helps represent regional warming in ERA-Interim and JRA-55. Incorporating vegetation dynamics in reanalyses and the use of accurate aerosol information, as in the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), would lead to improvements in the modelling of regional warming. The use of the ensemble technique adopted in the twentieth-century atmospheric model ensemble ERA-20CM significantly narrows the uncertainties associated with regional warming in reanalyses (standard deviation  =  0.15 °C decade−1).

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3