Cation and anion ordering in synthetic lepidolites and lithian muscovites: influence of the OH ∕ F and Li ∕ Al ratios on the mica formation studied by NMR (nuclear magnetic resonance) spectroscopy and X-ray diffraction

Author:

Sulcek Lara,Marler Bernd,Fechtelkord MichaelORCID

Abstract

Abstract. A large number of lepidolites K(LixAl3−x)[Si2xAl4−2xO10](OH)yF2−y and Li-muscovites K(LixAl2-x/3□1-2x/3)[Si3AlO10](OH)yF2−y were synthesised by a gelling method in combination with hydrothermal syntheses at a pressure of 2 kbar and a temperature of 873 K. The nominal composition ranged between 0.0≤x≤2.0 and 0.0≤y≤2.0, i.e. from polylithionite K[Li2.0Al][Si4.0O10](OH)yF2−y over trilithionite K[Li1.5Al1.5][AlSi3.0O10](OH)yF2−y to muscovite K[Al2.0□][AlSi3.0O10](OH)yF2−y. 1H, 19F, 29Si and 27Al magic-angle spinning nuclear magnetic resonance (MAS NMR) and 27Al multiple-quantum magic-angle spinning (MQMAS) NMR spectroscopy has been performed to investigate the order and/or disorder state of Si and Al in the tetrahedral layers and of Li, Al, OH and F in the octahedral layer. The synthetic mica crystals are very small, ranging from 0.1 to 5 µm. With increasing Al content, the crystal sizes decrease. Rietveld structure analyses on 12 samples showed that nearly all samples consist of two mica polytypes (1M and 2M1) of varying proportions. In the case of lepidolites, the 1M / 2M1 ratio depends on the Li/Al ratio of the reaction mixture. The refinement of the occupancy factors of octahedral sites shows that lepidolites (1.5≤x≤2.0) represent a solid solution series with polylithionite and trilithionite as the endmembers. In the case of the Li-muscovites (0.0≤x≤1.5), the 1M / 2M1 ratio depends on the number of impurity phases like eucryptite or sanidine depleting the reaction mixture of Li or Al. There is no solid solution between trilithionite and muscovite; instead, the Li-muscovite crystals consist of domains differing in the relative proportions of muscovite and trilithionite. The overall composition of the synthesised micas which consist of two polytypes can be characterised by 29Si, 1H and 19F MAS NMR spectroscopy. The Si/Al ratio in the tetrahedral layers and thus the content of [4]Al were calculated by analysing the signal intensities of the 29Si MAS NMR experiments. The Li content xest was calculated from the measured tetrahedral Si/Al ratio of the 29Si MAS NMR signals. The calculated Li contents xest of samples between polylithionite and trilithionite agree with the expected values. The F-rich samples show slightly increased values and the OH samples lower values. Lepidolites with only F (x = 1.5 to 2.0, y = 0.0), but not lepidolites with only OH (x = 1.5 to 2.0 and y = 2.0), were observed after synthesis. With decreasing Li content, x≤1.2, Li-muscovites containing mostly hydroxyl (y>1.0) are formed. It was possible to synthesise fluorine containing micas with a Li content as low as 0.3 and y = 0.2 to 1.8. The 19F and 1H MAS NMR experiments reveal that F and OH are not distributed statistically but local structural preferences exist. F is attracted by Li-rich and OH by Al-rich environments. The quadrupolar coupling constant which represents the anisotropy of the Al coordination is low for polylithionite with CQ=1.5 MHz and increases to CQ=3.8 MHz for trilithionite. For tetrahedral Al a smaller increase of CQ from 1.7 to 2.8 MHz is observed. Advancing from trilithionite to muscovite both quadrupolar coupling constants decrease to 2.5 MHz for octahedral and 1.5 MHz for tetrahedral Al. In polylithionite there is the most isotropic environment for octahedral Al; there are only Li2Al sites coordinated by F in the octahedral sheets and O from the tetrahedral sheets which are regular, containing only Si. The distortion and anisotropy for Al in tetrahedral as well as octahedral sheets increases with rising Al content. The most anisotropic environment can be found in trilithionite, especially for octahedral Al.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Subject

Pulmonary and Respiratory Medicine,Pediatrics, Perinatology and Child Health

Reference46 articles.

1. Alba, M. D., Becerro, A. I., Castro, M. A., and Perdigón, A. C.: High-resolution 1H MAS NMR spectra of 2 : 1 phyllosilicates, Chem. Commun., 37–38, https://doi.org/10.1039/a906577f, 2000.

2. Bailey, S. W. and Christie, O.: Three-layer monoclinic lepidolite from Tordal, Norway, Am. Mineral., 63, 203–204, 1978.

3. Boukili, B., Robert, J.-L., Beny, J.-M., and Holtz, F.: Structural effects of OH – F substitution in trioctahedral micas of the system: K2O-FeO-Fe2O3-Al2O3-SiO2-H2O-HF, Schweiz. Miner. Petrog., 81, 55–67, 2001.

4. Boukili, B., Holtz, F., Beny, J.-M., and Robert, J.-L.: “Fe-F and Al-F avoidance rule” in ferrous-aluminous (OH,F) biotites, Schweiz. Miner. Petrog., 82, 549–559, 2002.

5. Černý, P. and Burt, D. M.: Paragenesis, crystallochemical characteristics, and geochemical evolution of the micas in granite pegmatites, Rev. Mineral. Geochem., 13, 257–297, 1984.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3