Trace and ultratrace elements in spinel subgroup minerals of ultramafic rocks from the Voltri Massif (NW Italy): the influence of microstructure and texture

Author:

Fornasaro SilviaORCID,Comodi Paola,Crispini LauraORCID,Zappatore Sandro,Zucchini Azzurra,Marescotti PietroORCID

Abstract

Abstract. An innovative multi-analytical approach comprising mineralogical, minero-chemical, and microstructural analyses as well as an indirect machine learning-based statistical method was applied to investigate the mineralogy and the mineral chemistry of spinel subgroup minerals (SSMs) of different ultramafic rocks from the high-pressure metaophiolites of the Voltri Massif (Central Liguria, NW Italy). The study was focused on the correlation between the compositional variations of SSMs and their texture, microstructure, and the degree of serpentinization of the host rock. The SSM occurs with three main textures and microstructures linked to the progressive serpentinization and deformation of ultramafic rocks during the Alpine orogenic events: (i) Cr-spinel porphyroclasts with various degrees of recrystallization (up to magnetite porphyroblasts) within partially serpentinized peridotite and massive serpentinite; (ii) magnetite crystals associated with pseudomorphic and non-pseudomorphic serpentine textures (e.g., mesh, hourglass, ribbon, and interpenetrating textures) in partially serpentinized peridotite and massive serpentinites; and (iii) magnetite crystals re-oriented along the foliations developed in serpentine schist. The chemical composition of SSMs varies systematically within the textures and microstructures. These processes also affected the chemical composition of SSMs, the availability of Mn, Zn, Ni, and Co in solution, and their consequent incorporation in the lattice of chromian spinel due to olivine breakdown, the major repository of these elements in ultramafic rocks. At a general scale, the trace and ultratrace variability is primarily related to the petrologic and tectonic evolution but, at a local scale, also the mineralogical, lithological, structural, and textural features correlated to the degree of serpentinization and/or deformation. These significantly influence the distribution and concentration of trace and ultratrace elements in SSMs. The results of the present work were also confirmed by an innovative indirect statistical method performed through the Weka Machine Learning Workbench.

Publisher

Copernicus GmbH

Subject

Pulmonary and Respiratory Medicine,Pediatrics, Perinatology and Child Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3