Grazing increases litter decomposition rate but decreases nitrogen release rate in an alpine meadow

Author:

Sun Yi,He Xiong Z.,Hou Fujiang,Wang Zhaofeng,Chang Shenghua

Abstract

Abstract. Litter decomposition and N release are the key processes that strongly determine the nutrient cycling at the soil–plant interface; however, how these processes are affected by grazing or grazing exclusion in the alpine grassland ecosystems on the Qinghai-Tibetan Plateau (QTP) is poorly understood. So far few studies have simultaneously investigated the influence of both litter quality and incubation site on litter decomposition and N release. Moreover, previous studies on the QTP investigating how grazing exclusion influences plant abundance and biodiversity usually lasted for many years, and the short-term effects have rarely been reported. This work studied the short-term (6 months) effects of grazing and grazing exclusion on plant community composition (i.e., plant species presented) and litter quality and long-term (27–33 months) effects on soil chemical characteristics and mixed litter decomposition and N release on the QTP. Our results demonstrate that (1) shorter-term grazing exclusion had no effect on plant community composition but increased plant palatability and total litter biomass; (2) grazing resulted in higher N and C content in litter; and (3) grazing accelerated litter decomposition, while grazing exclusion promoted N release from litter and increased soil organic carbon. In addition, incubation site had significantly more impact than litter quality on litter decomposition and N release, while litter quality affected decomposition in the early stages. This study provides insights into the mechanisms behind the nutrient cycling in alpine ecosystems. We suggest that periodic grazing and grazing exclusion is beneficial in grassland management on the QTP.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3