Distinguished hyperbolic trajectories in time-dependent fluid flows: analytical and computational approach for velocity fields defined as data sets

Author:

Ide K.,Small D.,Wiggins S.

Abstract

Abstract. In this paper we develop analytical and numerical methods for finding special hyperbolic trajectories that govern geometry of Lagrangian structures in time-dependent vector fields. The vector fields (or velocity fields) may have arbitrary time dependence and be realized only as data sets over finite time intervals, where space and time are discretized. While the notion of a hyperbolic trajectory is central to dynamical systems theory, much of the theoretical developments for Lagrangian transport proceed under the assumption that such a special hyperbolic trajectory exists. This brings in new mathematical issues that must be addressed in order for Lagrangian transport theory to be applicable in practice, i.e. how to determine whether or not such a trajectory exists and, if it does exist, how to identify it in a sequence of instantaneous velocity fields. We address these issues by developing the notion of a distinguished hyperbolic trajectory (DHT). We develop an existence criteria for certain classes of DHTs in general time-dependent velocity fields, based on the time evolution of Eulerian structures that are observed in individual instantaneous fields over the entire time interval of the data set. We demonstrate the concept of DHTs in inhomogeneous (or "forced") time-dependent linear systems and develop a theory and analytical formula for computing DHTs. Throughout this work the notion of linearization is very important. This is not surprising since hyperbolicity is a "linearized" notion. To extend the analytical formula to more general nonlinear time-dependent velocity fields, we develop a series of coordinate transforms including a type of linearization that is not typically used in dynamical systems theory. We refer to it as Eulerian linearization, which is related to the frame independence of DHTs, as opposed to the Lagrangian linearization, which is typical in dynamical systems theory, which is used in the computation of Lyapunov exponents. We present the numerical implementation of our method which can be applied to the velocity field given as a data set. The main innovation of our method is that it provides an approximation to the DHT for the entire time-interval of the data set. This offers a great advantage over the conventional methods that require certain regions to converge to the DHT in the appropriate direction of time and hence much of the data at the beginning and end of the time interval is lost.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lagrangian coherent structures in space plasmas;Reviews of Modern Plasma Physics;2023-11-05

2. Nearly integrable flows and chaotic tangles in the Dimits shift regime of plasma edge turbulence;Physics of Plasmas;2023-09-01

3. Path-Based Divergence Rates and Lagrangian Uncertainty in Stochastic Flows;SIAM Journal on Applied Dynamical Systems;2023-02-23

4. Discussion and Visualization of Distinguished Hyperbolic Trajectories as a Generalization of Critical Points to 2D Time-dependent Flow;2022 Topological Data Analysis and Visualization (TopoInVis);2022-10

5. Locating Transition Zone in Phase Space;Journal of Chemical Theory and Computation;2022-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3