Climate change signal in the ocean circulation of the Tyrrhenian Sea

Author:

de la Vara AlbaORCID,Parras-Berrocal Iván M.ORCID,Izquierdo AlfredoORCID,Sein Dmitry V.ORCID,Cabos WilliamORCID

Abstract

Abstract. The Tyrrhenian Sea plays an important role in the winter deep water formation in the northwestern Mediterranean through the water that enters the Ligurian Sea via the Corsica Channel. Therefore, the study of the impact of the changes on the future climate on the Tyrrhenian circulation and its consequences represents an important issue. Furthermore, the seasonally dependent Tyrrhenian circulation, which is rich in dynamical mesoscale structures, is dominated by the interplay of local climate and the basin-wide Mediterranean circulation via the water transport across its major straits, and an adequate representation of its features represents an important modeling challenge. In this work we examine with a regionally coupled atmosphere–ocean model the changes in the Tyrrhenian circulation by the end of the 21st century under the RCP8.5 emission scenario, their driving mechanisms, and their possible impact on winter convection in the NW Mediterranean. Our model successfully reproduces the main features of the Mediterranean Sea and Tyrrhenian Basin present-day circulation. We find that toward the end of the century the winter cyclonic along-slope stream around the Tyrrhenian Basin becomes weaker. This weakening increases the wind work transferred to the mesoscale structures, which become more intense than at present in winter and summer. We also find that, in the future, the northward water transport across the Corsica Channel towards the Liguro-Provençal basin becomes smaller than today. Also, water that flows through this channel presents a stronger stratification because of a generalized warming with a freshening of upper and a saltening of intermediate waters. Both factors may contribute to the interruption of deep water formation in the Gulf of Lions by the end of the century.

Funder

Ministerio de Ciencia, Innovación y Universidades

Ministry of Science and Higher Education of the Russian Federation

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3