A Bayesian hierarchical model for reconstructing relative sea level: from raw data to rates of change

Author:

Cahill N.,Kemp A. C.,Horton B. P.ORCID,Parnell A. C.

Abstract

Abstract. We present a holistic Bayesian hierarchical model for reconstructing the continuous and dynamic evolution of relative sea-level (RSL) change with fully quantified uncertainty. The reconstruction is produced from biological (foraminifera) and geochemical (δ13C) sea-level indicators preserved in dated cores of salt-marsh sediment. Our model is comprised of three modules: (1) A Bayesian transfer function for the calibration of foraminifera into tidal elevation, which is flexible enough to formally accommodate additional proxies (in this case bulk-sediment δ13C values), (2) A chronology developed from an existing Bchron age-depth model, and (3) An existing errors-in-variables integrated Gaussian process (EIV-IGP) model for estimating rates of sea-level change. We illustrate our approach using a case study of Common Era sea-level variability from New Jersey. USA We develop a new Bayesian transfer function (B-TF), with and without the δ13C proxy and compare our results to those from a widely-used weighted-averaging transfer function (WA-TF). The formal incorporation of a second proxy into the B-TF model results in smaller vertical uncertainties and improved accuracy for reconstructed RSL. The vertical uncertainty from the multi-proxy B-TF is ∼ 28 % smaller on average compared to the WA-TF. When evaluated against historic tide-gauge measurements, the multi-proxy B-TF most accurately reconstructs the RSL changes observed in the instrumental record (MSE = 0.003 m2). The holistic model provides a single, unifying framework for reconstructing and analysing sea level through time. This approach is suitable for reconstructing other paleoenvironmental variables using biological proxies.

Publisher

Copernicus GmbH

Reference66 articles.

1. Barlow, N. L. M., Long, A. J., Saher, M. H., Gehrels, W. R., Garnett, M. H., and Scaife, R. G.: Salt-marsh reconstructions of relative sea-level change in the North Atlantic during the last 2000 years, Quaternary Sci. Rev., 99, 1–16, 2014.

2. Birks, H. J.: Overview of numerical methods in palaeolimnology, in: Tracking Environmental Change Using Lake Sediments: Data Handling and Numerical Techniques, Vol. 5, edited by: Birks, H., Lotter, A., Juggins, S., and Smol, J., Springer, the Netherlands, 19–92, 2012.

3. Birks, H. J. B.: Quantitative palaeoenvironmental reconstructions, in: Statistical Modelling of Quaternary Science Data, edited by: Maddy, D., and Brew, J. S., vol. Technical Guide 5 of Technical Guide, Quaternary Research Association, Cambridge, 161–254, 1995.

4. Birks, H. J. B., Line, J. M., Juggins, S., Stevenson, A. C., and ter Braak, C. J. F.: Diatoms and pH Reconstruction, Philos. T. R. Soc. B, 327, 263–278, 1990.

5. Birks, J.: Calibration, transfer functions and environmental reconstructions, in: Reconstructing Climate Variations in South America and the Antarctic Peninsula over the last 2000 years, II International Symposium, October 2010, Valdivia, Chile, 2010.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3