Surface dynamics and history of the calving cycle of Astrolabe Glacier (Adélie Coast, Antarctica) derived from satellite imagery

Author:

Provost Floriane,Zigone DimitriORCID,Le Meur EmmanuelORCID,Malet Jean-PhilippeORCID,Hibert ClémentORCID

Abstract

Abstract. The recent calving of Astrolabe Glacier on the Adélie Coast (East Antarctica) in November 2021 presents an opportunity to better understand the processes leading to ice tongue fracturing. To document the fractures and rift evolution that led to the calving, we used the archive of Sentinel-2 optical images to measure the ice motion and strain rates from 2017 to 2021. The long-term evolution of the Astrolabe ice tongue is mapped using airborne and satellite imagery from 1947 to November 2021. These observations are then compared with measurements of sea-ice extent and concentration. We show that calving occurs almost systematically at the onset of or during the melting season. Additionally, we observe a significant change in the periodicity of sea ice surrounding Astrolabe Glacier in the last decade (2011–2021) compared to previous observations (1979–2011), which has resulted in a change in the Astrolabe calving cycle. Indeed, one can observe a decrease in the duration of sea-ice-free conditions during the austral summers after 2011 in the vicinity of the glacier, which seems to have favoured spatial extension of the ice tongue. However, the analysis of strain rate time series revealed that the calving of November 2021 (20 km2) occurred at the onset of sea-ice melting season but resulted from the glacier dislocation that took place suddenly in June 2021 in the middle of the winter. These observations indicate that while sea ice can protect and promote the spatial extension of a glacier ice tongue, its buttressing is not sufficient to inhibit rifting and ice fracturing.

Funder

Agence Nationale de la Recherche

Institut Polaire Français Paul Emile Victor

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3