Return glider radiosonde for in situ upper-air research measurements

Author:

Kräuchi Andreas,Philipona RolfORCID

Abstract

Abstract. Upper-air balloon soundings for weather predictions have been made since the beginning of the 20th century. New radiosonde instruments for in situ humidity-, radiation- and gas-profile measurements in the troposphere and the lower stratosphere, were introduced in recent years for atmospheric research and climate monitoring, but such instruments are often expensive and it is desired they be reused on multiple flights. Recovering instruments that freely descend with parachutes is time consuming, sometimes difficult and even dangerous. Here, we introduce the return glider radiosonde (RGR), which enables flying and retrieving valuable in situ upper-air instruments. The RGR is lifted with weather balloons similar to traditional radiosondes to a preset altitude, at which time a release mechanism cuts the tether string, and a built-in autopilot flies the glider autonomously back to the launch site or a desired preprogrammed location. Once the RGR reaches the landing coordinates it circles down and releases a parachute 100 m above ground for landing. The motivation for this project was to measure radiation profiles throughout the atmosphere with the same instrument multiple times and with a rapid turn-around time. The paper describes technical aspects of the return glider radiosonde and the built-in radiation instruments and shows test flights up to 24 km altitude that are analyzed in terms of flight performance and maximal distances covered. Several successive flights measuring radiation profiles demonstrate the reliability and the operational readiness of the RGR, allowing new ways for atmospheric in situ research and monitoring with payloads up to several kg depending on the specific size of the glider.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3