Dynamics, chemical properties and bioavailability of DOC in an early successional catchment

Author:

Risse-Buhl U.,Hagedorn F.,Dümig A.,Gessner M. O.,Schaaf W.,Nii-Annang S.,Gerull L.,Mutz M.

Abstract

Abstract. The dynamics of dissolved organic carbon (DOC) have been intensively studied in mature ecosystems, but little is known about DOC dynamics and the significance of DOC as a substrate for microbial activity in early-successional catchments. We determined the concentration, chemical composition, source, radiocarbon age, and bioavailability of DOC along the hydrological flow path from soil solution to a downstream pond in a recently constructed catchment (Chicken Creek Catchment, Germany). Soil solution, upwelling ground water, stream water, subsurface water in an alluvial fan, and pond water all had high DOC concentrations (averages: 6.0–11.6 mg DOC L–1), despite small carbon stocks in both vegetation and soil of the catchment. Solid-state CPMAS 13C NMR of DOC in upwelling ground water revealed a higher proportion of aromatic compounds (32%) and a lower proportion of carbohydrates (33%) than in pond water (18% and 45%, respectively). The average 14C age of DOC in upwelling ground water was 2600 to 2900 yr, while organic matter of the Quaternary substrate of the catchment had a 14C age of 3000 to 16 000 yr. Both the 14C age data and 13C NMR spectra suggest that DOC partly derived from organic matter of the Quaternary substrate (about 40 to 90% of the C in the DOC), indicating that both recent and old C of the DOC can support microbial activity during early ecosystem succession. However, in a 70 day incubation experiment, only about 11% of the total DOC was found to be bioavailable. This proportion was irrespective of the water type. Origin of the microbial communities within the catchment (enriched from soil, stream sediment or pond water) also had only a marginal effect on overall DOC utilization.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3