The Louvain-la-Neuve sea ice model LIM3.5: global and regional capabilities

Author:

Rousset C.,Vancoppenolle M.ORCID,Madec G.ORCID,Fichefet T.,Flavoni S.,Barthélemy A.,Benshila R.,Chanut J.,Levy C.,Masson S.,Vivier F.

Abstract

Abstract. We present the new 3.5 version of the Louvain-la-Neuve sea ice model (LIM) integrated in NEMO 3.6. The main novelty is the improvement of model robustness and versatility for a wide range of applications, from global to regional scales. Several modifications to the code were required. First, the time stepping scheme of the model was changed from parallel to sequential (ice dynamics first, then thermodynamics). Such a scheme enables to diagnose the different physical processes responsible for exchanges through the air–ice–ocean interfaces, as well as the online inspection of mass, heat and salt conservation properties of the code. In the course of these developments, several minor conservation leaks were found and fixed, so that LIM3.5 is exactly conservative. Second, lateral boundary conditions for regional ice-covered configurations have been implemented. To illustrate the new capabilities, two simulations are performed. One is a global simulation at a nominal 2° resolution forced by atmospheric climatologies and is found reasonably realistic although no specific tuning was done. The other is a regional simulation at 2 km resolution around the Svalbard Archipelago in the Arctic Ocean, with prescribed conditions at the four boundaries including tides. The simulation is able to resolve small-scale features and transient events such as the opening and closing of coastal polynyas. The ice mass budgets for both simulations are illustrated and mostly differ by the strength of ice formation in open water. LIM3.5 now forms a solid base for future scientific studies and model developments.

Funder

Agence Nationale de la Recherche

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3