Quasi-Newton methods for atmospheric chemistry simulations: implementation in UKCA UM vn10.8

Author:

Esentürk Emre,Abraham Nathan LukeORCID,Archer-Nicholls ScottORCID,Mitsakou Christina,Griffiths PaulORCID,Archibald AlexORCID,Pyle JohnORCID

Abstract

Abstract. A key and expensive part of coupled atmospheric chemistry–climate model simulations is the integration of gas-phase chemistry, which involves dozens of species and hundreds of reactions. These species and reactions form a highly coupled network of differential equations (DEs). There exist orders of magnitude variability in the lifetimes of the different species present in the atmosphere, and so solving these DEs to obtain robust numerical solutions poses a stiff problem. With newer models having more species and increased complexity, it is now becoming increasingly important to have chemistry solving schemes that reduce time but maintain accuracy. While a sound way to handle stiff systems is by using implicit DE solvers, the computational costs for such solvers are high due to internal iterative algorithms (e.g. Newton–Raphson methods). Here, we propose an approach for implicit DE solvers that improves their convergence speed and robustness with relatively small modification in the code. We achieve this by blending the existing Newton–Raphson (NR) method with quasi-Newton (QN) methods, whereby the QN routine is called only on selected iterations of the solver. We test our approach with numerical experiments on the UK Chemistry and Aerosol (UKCA) model, part of the UK Met Office Unified Model suite, run in both an idealised box-model environment and under realistic 3-D atmospheric conditions. The box-model tests reveal that the proposed method reduces the time spent in the solver routines significantly, with each QN call costing 27 % of a call to the full NR routine. A series of experiments over a range of chemical environments was conducted with the box model to find the optimal iteration steps to call the QN routine which result in the greatest reduction in the total number of NR iterations whilst minimising the chance of causing instabilities and maintaining solver accuracy. The 3-D simulations show that our moderate modification, by means of using a blended method for the chemistry solver, speeds up the chemistry routines by around 13 %, resulting in a net improvement in overall runtime of the full model by approximately 3 % with negligible loss in the accuracy. The blended QN method also improves the robustness of the solver, reducing the number of grid cells which fail to converge after 50 iterations by 40 %. The relative differences in chemical concentrations between the control run and that using the blended QN method are of order  ∼  10−7 for longer-lived species, such as ozone, and below the threshold for solver convergence (10−4) almost everywhere for shorter-lived species such as the hydroxyl radical.

Publisher

Copernicus GmbH

Reference44 articles.

1. Banzon, V., Reynolds, R., and National Center for Atmospheric Research Staff (Eds.): The Climate Data Guide: SST data: NOAA High-resolution (0.25×0.25) Blended Analysis of Daily SST and Ice, OISSTv2, available at: https://climatedataguide.ucar.edu/climate-data/sst-data-noaa-high-resolution-025x025-blended-analysis-daily -sst-and-ice-oisstv2, last access: 23 June 2018.

2. Abraham, N. L., Archibald, A. T., Bellouin, N., Boucher, O., Braesicke, P., Bushell, A., Carslaw, K., Collins, B., Dalvi, M., Emmerson, K., Folberth, G., Haywood, J., Hewitt, A., Johnson, C., Kipling, Z., Macintyre, H., Mann, G., Telford, P., Merikanto, J., Morgenstern, O., O'Connor, F., Ordonez, C., Osprey, S., Pringle, K., Pyle, J., Rae, J., Reddington, C., Savage, N., Spracklen, D., Stier, P., West, R., Mulcahy, J., Woodward, S., Boutle, I., and Woodhouse, M. T.: Unified Model Documentation Paper 084: United Kingdom Chemistry and Aerosol (UKCA) Technical Description Met UM Version 10.6, available at: https://code.metoffice.gov.uk/doc/um/vn10.6/papers/umdp 084.pdf (last access: 26 October 2016) (for the version of the model used here), 2012.

3. Atkinson, K.: Introduction to Numerical Analysis, John Wiley & Sons Inc., 1989.

4. Banerjee, A., Maycock, A. C., Archibald, A. T., Abraham, N. L., Telford, P., Braesicke, P., and Pyle, J. A.: Drivers of changes in stratospheric and tropospheric ozone between year 2000 and 2100, Atmos. Chem. Phys., 16, 2727–2746, https://doi.org/10.5194/acp-16-2727-2016, 2016.

5. Brandt, A.: Multilevel adaptive solutions to boundary value problems, Math. Comp., 31, 333–390, 1977.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3