Climate model configurations of the ECMWF Integrated Forecasting System (ECMWF-IFS cycle 43r1) for HighResMIP

Author:

Roberts Christopher D.ORCID,Senan RetishORCID,Molteni Franco,Boussetta Souhail,Mayer Michael,Keeley Sarah P. E.ORCID

Abstract

Abstract. This paper presents atmosphere-only and coupled climate model configurations of the European Centre for Medium-Range Weather Forecasts Integrated Forecasting System (ECMWF-IFS) for different combinations of ocean and atmosphere resolution. These configurations are used to perform multi-decadal ensemble experiments following the protocols of the High Resolution Model Intercomparison Project (HighResMIP) and phase 6 of the Coupled Model Intercomparison Project (CMIP6). These experiments are used to evaluate the sensitivity of major biases in the atmosphere, ocean, and cryosphere to changes in atmosphere and ocean resolution. All configurations successfully reproduce the observed long-term trends in global mean surface temperature. Furthermore, following an adjustment to account for drift in the subsurface ocean, coupled configurations of ECMWF-IFS realistically reproduce observation-based estimates of ocean heat content change since 1950. Climatological surface biases in ECMWF-IFS are relatively insensitive to an increase in atmospheric resolution from  ∼ 50 to  ∼ 25 km. However, increasing the horizontal resolution of the atmosphere while maintaining the same vertical resolution enhances the magnitude of a cold bias in the lower stratosphere. In coupled configurations, there is a strong sensitivity to an increase in ocean model resolution from 1 to 0.25°. However, this sensitivity to ocean resolution takes many years to fully manifest and is less apparent in the first year of integration. This result has implications for the ECMWF coupled model development strategy that typically relies on the analysis of biases in short ( < 1 year) ensemble (re)forecast data sets. The impacts of increased ocean resolution are particularly evident in the North Atlantic and Arctic, where they are associated with an improved Atlantic meridional overturning circulation, increased meridional ocean heat transport, and more realistic sea-ice cover. In the tropical Pacific, increased ocean resolution is associated with improvements to the magnitude and asymmetry of El Niño–Southern Oscillation (ENSO) variability and better representation of non-linear sea surface temperature (SST)–radiation feedbacks during warm events. However, increased ocean model resolution also increases the magnitude of a warm bias in the Southern Ocean. Finally, there is tentative evidence that both ocean coupling and increased atmospheric resolution can improve teleconnections between tropical Pacific rainfall and geopotential height anomalies in the North Atlantic.

Funder

H2020 European Research Council

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3