Isoprene-derived secondary organic aerosol in the global aerosol–chemistry–climate model ECHAM6.3.0–HAM2.3–MOZ1.0
-
Published:2018-08-13
Issue:8
Volume:11
Page:3235-3260
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Stadtler ScarletORCID, Kühn ThomasORCID, Schröder Sabine, Taraborrelli DomenicoORCID, Schultz Martin G.ORCID, Kokkola HarriORCID
Abstract
Abstract. Within the framework of the global chemistry climate model
ECHAM–HAMMOZ, a novel explicit coupling between the sectional aerosol model
HAM-SALSA and the chemistry model MOZ was established to form isoprene-derived secondary organic aerosol (iSOA). Isoprene oxidation in the chemistry
model MOZ is described by a semi-explicit scheme consisting of 147 reactions
embedded in a detailed atmospheric chemical mechanism with a total of
779 reactions. Semi-volatile and low-volatile compounds produced during
isoprene photooxidation are identified and explicitly partitioned by
HAM-SALSA. A group contribution method was used to estimate their evaporation
enthalpies and corresponding saturation vapor pressures, which are used by
HAM-SALSA to calculate the saturation concentration of each iSOA precursor.
With this method, every single precursor is tracked in terms of condensation
and evaporation in each aerosol size bin. This approach led to the
identification of dihydroxy dihydroperoxide (ISOP(OOH)2) as a main
contributor to iSOA formation. Further, the reactive uptake of isoprene
epoxydiols (IEPOXs) and isoprene-derived glyoxal were included as iSOA
sources. The parameterization of IEPOX reactive uptake includes a dependency
on aerosol pH value. This model framework connecting semi-explicit isoprene
oxidation with explicit treatment of aerosol tracers leads to a global
annual average isoprene SOA yield of 15 % relative to the primary
oxidation of isoprene by OH, NO3 and ozone. With 445.1 Tg
(392.1 Tg C) isoprene emitted, an iSOA source of 138.5 Tg (56.7 Tg C) is
simulated. The major part of iSOA in ECHAM–HAMMOZ is produced by IEPOX
at 42.4 Tg (21.0 Tg C) and ISOP(OOH)2 at 78.0 Tg (27.9 Tg C). The main sink
process is particle wet deposition, which removes 133.6 (54.7 Tg C). The
average iSOA burden reaches 1.4 Tg (0.6 Tg C) in the year 2012.
Publisher
Copernicus GmbH
Reference115 articles.
1. Aiken, A. C., Salcedo, D., Cubison, M. J., Huffman, J. A., DeCarlo, P. F.,
Ulbrich, I. M., Docherty, K. S., Sueper, D., Kimmel, J. R., Worsnop, D. R.,
Trimborn, A., Northway, M., Stone, E. A., Schauer, J. J., Volkamer, R. M.,
Fortner, E., de Foy, B., Wang, J., Laskin, A., Shutthanandan, V., Zheng, J.,
Zhang, R., Gaffney, J., Marley, N. A., Paredes-Miranda, G., Arnott, W. P.,
Molina, L. T., Sosa, G., and Jimenez, J. L.: Mexico City aerosol analysis
during MILAGRO using high resolution aerosol mass spectrometry at the urban
supersite (T0) – Part 1: Fine particle composition and organic source
apportionment, Atmos. Chem. Phys., 9, 6633–6653,
https://doi.org/10.5194/acp-9-6633-2009, 2009. a, b 2. Aiken, A. C., de Foy, B., Wiedinmyer, C., DeCarlo, P. F., Ulbrich, I. M.,
Wehrli, M. N., Szidat, S., Prevot, A. S. H., Noda, J., Wacker, L., Volkamer,
R., Fortner, E., Wang, J., Laskin, A., Shutthanandan, V., Zheng, J., Zhang,
R., Paredes-Miranda, G., Arnott, W. P., Molina, L. T., Sosa, G., Querol, X.,
and Jimenez, J. L.: Mexico city aerosol analysis during MILAGRO using high
resolution aerosol mass spectrometry at the urban supersite (T0) – Part 2:
Analysis of the biomass burning contribution and the non-fossil carbon
fraction, Atmos. Chem. Phys., 10, 5315–5341,
https://doi.org/10.5194/acp-10-5315-2010, 2010. a 3. Athanasopoulou, E., Vogel, H., Vogel, B., Tsimpidi, A. P., Pandis, S. N.,
Knote, C., and Fountoukis, C.: Modeling the meteorological and chemical
effects of secondary organic aerosols during an EUCAARI campaign, Atmos.
Chem. Phys., 13, 625–645, https://doi.org/10.5194/acp-13-625-2013, 2013. a 4. Barley, M. H. and McFiggans, G.: The critical assessment of vapour pressure
estimation methods for use in modelling the formation of atmospheric organic
aerosol, Atmos. Chem. Phys., 10, 749–767,
https://doi.org/10.5194/acp-10-749-2010, 2010. a, b, c 5. Bergman, T., Kerminen, V.-M., Korhonen, H., Lehtinen, K. J., Makkonen, R.,
Arola, A., Mielonen, T., Romakkaniemi, S., Kulmala, M., and Kokkola, H.:
Evaluation of the sectional aerosol microphysics module SALSA implementation
in ECHAM5-HAM aerosol-climate model, Geosci. Model Dev., 5, 845–868,
https://doi.org/10.5194/gmd-5-845-2012, 2012. a, b
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|