ORACLE 2-D (v2.0): an efficient module to compute the volatility and oxygen content of organic aerosol with a global chemistry–climate model
-
Published:2018-08-21
Issue:8
Volume:11
Page:3369-3389
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Tsimpidi Alexandra P., Karydis Vlassis A., Pozzer AndreaORCID, Pandis Spyros N., Lelieveld JosORCID
Abstract
Abstract. A new module, ORACLE 2-D,
simulating organic aerosol formation and evolution in the atmosphere has been
developed and evaluated. The module calculates the concentrations of
surrogate organic species in two-dimensional space defined by volatility and
oxygen-to-carbon ratio. It is implemented into the EMAC global
chemistry–climate model, and a comprehensive evaluation of its performance
is conducted using an aerosol mass spectrometer (AMS) factor analysis dataset
derived from almost all major field campaigns that took place globally during
the period 2001–2010. ORACLE 2-D uses a simple photochemical aging scheme
that efficiently simulates the net effects of fragmentation and
functionalization of the organic compounds. The module predicts not only the
mass concentration of organic aerosol (OA) components, but also their
oxidation state (in terms of O : C), which allows for their classification
into primary OA (POA, chemically unprocessed), fresh secondary OA (SOA, low
oxygen content), and aged SOA (highly oxygenated). The explicit simulation of
chemical OA conversion from freshly emitted compounds to a highly oxygenated
state during photochemical aging enables the tracking of hygroscopicity
changes in OA that result from these reactions. ORACLE 2-D can thus compute
the ability of OA particles to act as cloud condensation nuclei and serves as
a tool to quantify the climatic impact of OA.
Publisher
Copernicus GmbH
Reference89 articles.
1. Ahmadov, R., McKeen, S. A., Robinson, A. L., Bahreini, R., Middlebrook, A.
M., de Gouw, J. A., Meagher, J., Hsie, E. Y., Edgerton, E., Shaw, S., and
Trainer, M.: A volatility basis set model for summertime secondary organic
aerosols over the eastern United States in 2006, J. Geophys. Res.-Atmos.,
117, D06301, https://doi.org/10.1029/2011jd016831, 2012. 2. Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A.,
Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y.,
Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R.,
Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J.,
Metzger, A., Baltensperger, U., and Jimenez, J. L.: O ∕ C and OM ∕ OC
ratios of primary, secondary, and ambient organic aerosols with high-resolution
time-of-flight aerosol mass spectrometry, Environmen. Sci. Technol., 42, 4478–4485, 2008. 3. Allan, J. D., Williams, P. I., Morgan, W. T., Martin, C. L., Flynn, M. J., Lee,
J., Nemitz, E., Phillips, G. J., Gallagher, M. W., and Coe, H.: Contributions
from transport, solid fuel burning and cooking to primary organic aerosols in
two UK cities, Atmos. Chem. Phys., 10, 647–668, https://doi.org/10.5194/acp-10-647-2010, 2010. 4. Athanasopoulou, E., Vogel, H., Vogel, B., Tsimpidi, A. P., Pandis, S. N., Knote,
C., and Fountoukis, C.: Modeling the meteorological and chemical effects of
secondary organic aerosols during an EUCAARI campaign, Atmos. Chem. Phys., 13,
625–645, https://doi.org/10.5194/acp-13-625-2013, 2013. 5. Bacer, S., Sullivan, S. C., Karydis, V. A., Barahona, D., Krämer, M., Nenes,
A., Tost, H., Tsimpidi, A. P., Lelieveld, J., and Pozzer, A.: Implementation of
a comprehensive ice crystal formation parameterization for cirrus and mixed-phase
clouds into the EMAC model (based on MESSy 2.53), Geosci. Model Dev. Discuss.,
https://doi.org/10.5194/gmd-2018-62, in review, 2018.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|