A new bias-correction method for precipitation over complex terrain suitable for different climate states: a case study using WRF (version 3.8.1)
-
Published:2020-10-26
Issue:10
Volume:13
Page:5007-5027
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Velasquez PatricioORCID, Messmer MartinaORCID, Raible Christoph C.
Abstract
Abstract. This work presents a new bias-correction method for precipitation over complex terrain that explicitly considers orographic characteristics. This consideration offers a good alternative to the standard empirical quantile mapping (EQM) method during colder climate states in which the orography strongly deviates from the present-day state, e.g. during glacial conditions such as the Last Glacial Maximum (LGM). Such a method is needed in the event that absolute precipitation fields are used, e.g. as input for glacier modelling or to assess potential human occupation and according migration routes in past climate states. The new bias correction and its performance are presented for Switzerland using regional climate model simulations at 2 km resolution driven by global climate model outputs obtained under perpetual 1990 and LGM conditions. Comparing the present-day regional climate model simulation with observations, we find a strong seasonality and, especially during colder months, a height dependence of the bias in precipitation. Thus, we suggest a three-step correction method consisting of (i) a separation into different orographic characteristics, (ii) correction of very low intensity precipitation, and (iii) the application of an EQM, which is applied to each month separately. We find that separating the orography into 400 m height intervals provides the overall most reasonable correction of the biases in precipitation. The new method is able to fully correct the seasonal precipitation bias induced by the global climate model. At the same time, some regional biases remain, in particular positive biases over high elevated areas in winter and negative biases in deep valleys and Ticino in winter and summer. A rigorous temporal and spatial cross-validation with independent data exhibits robust results. The new bias-correction method certainly leaves some drawbacks under present-day conditions. However, the application to the LGM demonstrates that it is a more appropriate correction compared to the standard EQM under highly different climate conditions as the latter imprints present-day orographic features into the LGM climate.
Publisher
Copernicus GmbH
Reference128 articles.
1. Allen, M. R. and Ingram, W. J.: Constraints on future changes in climate and
the hydrologic cycle, Nature, 419, 228–232, https://doi.org/10.1038/nature01092, 2002. a 2. Amengual, A., Homar, V., Romero, R., Alonso, S., and Ramis, C.: A statistical
adjustment of regional climate model outputs to local scales: Application
to Platja de Palma, Spain, J. Climate, 25, 939–957,
https://doi.org/10.1175/JCLI-D-10-05024.1, 2011. a 3. Andréasson, J., Bergström, S., Carlsson, B., Graham, L. P., and
Lindström, G.: Hydrological change – climate change impact
simulations for Sweden, Ambio, 33, 228–234,
https://doi.org/10.1579/0044-7447-33.4.228, 2004. a 4. Auer, I., Böhm, R., and Schöner, W.: Austrian long-term climate
1767–2000, Osterreichische Beiträge zu Meteorologie und
Geophysik, 25, 147, ISSN 1016-6254, 2001. a 5. Ban, N., Schmidli, J., and Schär, C.: Evaluation of the
convection-resolving regional climate modeling approach in decade-long
simulations, J. Geophys. Res.-Atmos., 119, 7889–7907,
https://doi.org/10.1002/2014JD021478, 2014. a, b, c, d
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|