Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6
-
Published:2020-11-10
Issue:11
Volume:13
Page:5425-5464
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Hurtt George C.ORCID, Chini Louise, Sahajpal Ritvik, Frolking SteveORCID, Bodirsky Benjamin L., Calvin KatherineORCID, Doelman Jonathan C., Fisk Justin, Fujimori Shinichiro, Klein Goldewijk KeesORCID, Hasegawa TomokoORCID, Havlik Peter, Heinimann Andreas, Humpenöder Florian, Jungclaus Johan, Kaplan Jed O.ORCID, Kennedy Jennifer, Krisztin TamásORCID, Lawrence DavidORCID, Lawrence Peter, Ma Lei, Mertz OleORCID, Pongratz Julia, Popp Alexander, Poulter BenjaminORCID, Riahi KeywanORCID, Shevliakova Elena, Stehfest ElkeORCID, Thornton PeterORCID, Tubiello Francesco N.ORCID, van Vuuren Detlef P., Zhang Xin
Abstract
Abstract. Human land use activities have resulted in large
changes to the biogeochemical and biophysical properties of the Earth's
surface, with consequences for climate and other ecosystem services. In the
future, land use activities are likely to expand and/or intensify further to
meet growing demands for food, fiber, and energy. As part of the World
Climate Research Program Coupled Model Intercomparison Project (CMIP6), the
international community has developed the next generation of advanced Earth
system models (ESMs) to estimate the combined effects of human activities
(e.g., land use and fossil fuel emissions) on the carbon–climate system. A
new set of historical data based on the History of the Global Environment
database (HYDE), and multiple alternative scenarios of the future
(2015–2100) from Integrated Assessment Model (IAM) teams, is required as
input for these models. With most ESM simulations for CMIP6 now completed,
it is important to document the land use patterns used by those
simulations. Here we present results from the Land-Use Harmonization 2
(LUH2) project, which smoothly connects updated historical reconstructions
of land use with eight new future projections in the format required for
ESMs. The harmonization strategy estimates the fractional land use patterns,
underlying land use transitions, key agricultural management information,
and resulting secondary lands annually, while minimizing the differences
between the end of the historical reconstruction and IAM initial conditions
and preserving changes depicted by the IAMs in the future. The new approach
builds on a similar effort from CMIP5 and is now provided at higher
resolution (0.25∘×0.25∘) over a longer time domain (850–2100, with
extensions to 2300) with more detail (including multiple crop and pasture
types and associated management practices) using more input datasets
(including Landsat remote sensing data) and updated algorithms (wood harvest
and shifting cultivation); it is assessed via a new diagnostic package. The
new LUH2 products contain > 50 times the information content of
the datasets used in CMIP5 and are designed to enable new and improved
estimates of the combined effects of land use on the global carbon–climate
system.
Funder
U.S. Department of Energy National Aeronautics and Space Administration Horizon 2020 Nederlandse Organisatie voor Wetenschappelijk Onderzoek Environmental Restoration and Conservation Agency Japan Society for the Promotion of Science European Research Council National Center for Atmospheric Research National Natural Science Foundation of China
Publisher
Copernicus GmbH
Reference108 articles.
1. Arneth, A., Sitch, S., Pongratz, J., Stocker, B. D., Ciais, P., Poulter, B., Bayer, A.
D., Bondeau, A., Calle, L., Chini, L. P., Gasser, T., Fader, M.,
Friedlingstein, P., Kato, E., Li, W., Lindeskog, M., Nabel, J. E. M. S.,
Pugh, T. A. M., Robertson, E., Viovy, N., Yue, C., and Zaehle, S.: Historical carbon
dioxide emissions caused by land-use changes are possibly larger than
assumed, Nat. Geosci., 10, 79–84, 2017. 2. Avitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L., Phillips, O. L., Asner, G. P., Armston, J., Ashton, P. S., Banin, L., Bayol, N., Berry, N. J., Boeckx, P., de Jong, B. H. J., DeVries, B., Girardin, C. A. J., Kearsley, E., Lindsell, J. A., Lopez-Gonzalez, G., Lucas, R., Malhi, Y., Morel, A., Mitchard, E. T. A., Nagy, L., Qie, L., Quinones, M. J., Ryan, C. M., Ferry, S. J. W., Sunderland, T., Laurin, G. V., Gatti, R. C., Valentini, R., Verbeeck, H., Wijaya, A., and Willcock, S.: An integrated pan-tropical biomass map using multiple reference datasets, Glob. Chang. Biol., 22, 1406–1420, https://doi.org/10.1111/gcb.13139, 2016. 3. Baccini, A., Goetz, S., Walker, W., Laporte, N. T., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P. S. A., Dubayah, R., Friedl, M. A., Samanta, S., and Houghton, R. A.: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps, Nat. Clim. Change, 2, 182–185, https://doi.org/10.1038/nclimate1354, 2012. 4. Bodirsky, B. L., Popp, A., Weindl, I., Dietrich, J. P., Rolinski, S., Scheiffele, L., Schmitz, C., and Lotze-Campen, H.: N2O emissions from the global agricultural nitrogen cycle – current state and future scenarios, Biogeosciences, 9, 4169–4197, https://doi.org/10.5194/bg-9-4169-2012, 2012. 5. Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W., Cramer, W.,
Gerten, D., Lotze-Campen, H., Müller, C., Reichstein, M., and Smith, B.:
Modelling the role of agriculture for the 20th century global terrestrial
carbon balance, Glob. Change Biol., 13, 679–706, 2007.
Cited by
569 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|