Entrainment and suspension of sand and gravel
-
Published:2020-06-03
Issue:2
Volume:8
Page:485-504
-
ISSN:2196-632X
-
Container-title:Earth Surface Dynamics
-
language:en
-
Short-container-title:Earth Surf. Dynam.
Author:
de Leeuw JanORCID, Lamb Michael P., Parker GaryORCID, Moodie Andrew J., Haught Daniel, Venditti Jeremy G., Nittrouer Jeffrey A.
Abstract
Abstract. The entrainment and suspension of sand and gravel are important for the evolution of rivers, deltas, coastal areas, and submarine fans. The prediction of a vertical profile of suspended sediment concentration typically consists of assessing (1) the concentration near the bed using an entrainment relation and (2) the upward vertical distribution of sediment in the water column. Considerable uncertainty exists in regard to both of these steps, especially the near-bed concentration. Most entrainment relations have been tested against limited grain-size-specific data, and no relations have been evaluated for gravel suspension, which can be important in bedrock and mountain rivers. To address these issues, we compiled a database with suspended sediment data from natural rivers and flume experiments, taking advantage of the increasing availability of high-resolution grain size measurements. We evaluated 12 dimensionless parameters that may determine entrainment and suspension relations and applied multivariate regression analysis. A best-fit two-parameter equation (r2=0.79) shows that near-bed entrainment, evaluated at 10 % of the flow depth, decreases with the ratio of settling velocity to skin-friction shear velocity (wsi/u∗skin), as in previous relations, and increases with Froude number (Fr), possibly due to its role in determining bedload-layer concentrations. We used the Rouse equation to predict concentration upward from the reference level and evaluated the coefficient βi, which accounts for differences in the turbulent diffusivity of sediment from the parabolic eddy viscosity model used in the Rouse derivation. The best-fit relation for βi (r2=0.40) indicates greater relative sediment diffusivities for rivers with greater flow resistance, possibly due to bedform-induced turbulence, and larger wsi/u∗skin; the latter dependence is nonlinear and therefore different from standard Rouse theory. In addition, we used empirical relations for gravel saltation to show that our relation for near-bed concentration also provides good predictions for coarse-grained sediment. The new relations extend the calibrated parameter space over a wider range in sediment sizes and flow conditions compared to previous work and result in 95 % of concentration data throughout the water column predicted within a factor of 9.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Geophysics
Reference72 articles.
1. Akiyama, J. and Fukushima, Y.: Entrainment of noncohesive sediment into suspension, 3rd International Symposium on River Sedimentation, edited by: Want, S. Y., Shen, H. W., and Ding, L. Z., University of Minnesota, Minneapolis, Minnesota, USA, 803–813, 1986. 2. Allison, M. A. and Meselhe, E. A.: The use of large water and sediment diversions in the lower Mississippi River (Louisiana) for coastal restoration, J. Hydrol., 387, 346–360, https://doi.org/10.1016/j.jhydrol.2010.04.001, 2010. 3. Ashley, T. C., McElroy, B., Buscombe, D., Grams, P. E., and Kaplinski, M.: Estimating bedload from suspended load and water discharge in sand bed rivers, Water Resour. Res., 56, e2019WR025883, https://doi.org/10.1029/2019WR025883, 2020. 4. Barton, J. R. and Lin, P. N.: A study of the sediment transpot in alluvial streams, Colorado A&M College, Fort Colins, USA, CO, Report 55JRB2, 1955. 5. Bennett, S. J., Bridge, J. S., and Best, J. L.: Fluid and sediment dynamics of upper stage plane beds, J. Geophys. Res., 103, 1239–1274, 1998.
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|