Interactions between main channels and tributary alluvial fans: channel adjustments and sediment-signal propagation

Author:

Savi Sara,Tofelde StefanieORCID,Wickert Andrew D.ORCID,Bufe AaronORCID,Schildgen Taylor F.ORCID,Strecker Manfred R.

Abstract

Abstract. Climate and tectonics impact water and sediment fluxes to fluvial systems. These boundary conditions set river form and can be recorded by fluvial deposits. Reconstructions of boundary conditions from these deposits, however, is complicated by complex channel–network interactions and associated sediment storage and release through the fluvial system. To address this challenge, we used a physical experiment to study the interplay between a main channel and a tributary under different forcing conditions. In particular, we investigated the impact of a single tributary junction, where sediment supply from the tributary can produce an alluvial fan, on channel geometries and associated sediment-transfer dynamics. We found that the presence of an alluvial fan may either promote or prevent the movement of sediment within the fluvial system, creating different coupling conditions. By analyzing different environmental scenarios, our results reveal the contribution of both the main channel and the tributary to fluvial deposits upstream and downstream from the tributary junction. We summarize all findings in a new conceptual framework that illustrates the possible interactions between tributary alluvial fans and a main channel under different environmental conditions. This framework provides a better understanding of the composition and architecture of fluvial sedimentary deposits found at confluence zones, which can facilitate the reconstruction of the climatic or tectonic history of a basin.

Funder

Deutsche Forschungsgemeinschaft

Alexander von Humboldt-Stiftung

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Geophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3