Ozonolysis of surface adsorbed methoxyphenols: kinetics of aromatic ring cleavage vs. alkene side-chain oxidation
Author:
O'Neill E. M.,Kawam A. Z.,Van Ry D. A.,Hinrichs R. Z.
Abstract
Abstract. Lignin pyrolysis products, which include a variety of substituted methoxyphenols, constitute a major component of organics released by biomass combustion and may play a central role in the formation of atmospheric brown carbon. Understanding the atmospheric fate of these compounds upon exposure to trace gases is therefore critical to predicting the chemical and physical properties of biomass burning aerosol. We used diffuse reflectance infrared spectroscopy to monitor the heterogeneous ozonolysis of 4-propylguaiacol, eugenol, and isoeugenol adsorbed on NaCl and α-Al2O3 substrates. Adsorption of gaseous methoxyphenols onto these substrates produced near monolayer surface concentrations of 3 × 1018 molecules m-2. The subsequent dark heterogeneous ozonolysis of adsorbed 4-propylguaiacol cleaved the aromatic ring between the methoxy and phenol groups with the product conclusively identified by GC-MS and 1H-NMR. Kinetic analysis of eugenol and isoeugenol dark ozonolysis also suggested the formation of ring-cleaved products, although ozonolysis of the unsaturated substituent groups forming carboxylic acids and aldehydes was an order of magnitude faster. Average uptake coefficients for NaCl-adsorbed methoxyphenols were γ = 2.3 (±0.8) × 10-7 and 2 (±1) × 10-6 for ozonolysis of the aromatic ring and the unsaturated side chain, respectively, and reactions on α-Al2O3 were approximately two times slower. UV-visible radiation (λ>300 nm) enhanced eugenol ozonolysis of the aromatic ring by a factor of 4(±1) but had no effect on ozonolysis of the alkene side-chain.
Publisher
Copernicus GmbH
Reference54 articles.
1. Bari, M. A., Baumbach, G., Kuch, B., and Scheffknecht, G.: Wood smoke as a source of particle-phase organic compounds in residential areas, Atmos. Environ., 43, 4722–4732, https://doi.org/10.1016/j.atmosenv.2008.09.006, 2009. 2. Barnum, T., Medeiros, N., and Hinrichs, R. Z.: Condensed-phase versus gas-phase ozonolysis of catechol: a combined experimental and theoretical study, Atmos. Environ., 55, 98–106, https://doi.org/10.1016/j.atmosenv.2012.02.019, 2012. 3. Coeur-Tourneur, C., Tomas, A., Guilloteau, A., Henry, F., Ledoux, F., Visez, N., Riffault, V., Wenger, J. C., and Bedjanian, Y.: Aerosol formation yields from the reaction of catechol with ozone, Atmos. Environ., 43, 2360–2365, https://doi.org/10.1016/j.atmosenv.2008.12.054, 2009. 4. Coeur-Tourneur, C., Foulon, V., and Lareal, M.: Determination of aerosol yields from 3-methylcatechol and 4-methylcatechol ozonolysis in a simulation chamber, Atmos. Environ., 44, 852–857, https://doi.org/10.1016/j.atmosenv.2009.11.027, 2010. 5. Crutzen, P. J. and Andreae, M. O.: Biomass burning in the tropics – impact on atmospheric chemistry and biogeochemical cycles, Science, 250, 1669–1678, https://doi.org/10.1126/science.250.4988.1669, 1990.
|
|