Global and regional impacts of HONO on the chemical composition of clouds and aerosols
Author:
Elshorban Y. F.ORCID, Crutzen P. J., Steil B., Pozzer A., Tost H., Lelieveld J.
Abstract
Abstract. Nitrous acid (HONO) photolysis can significantly increase HOx (OH+HO2) radical formation, enhancing organic and inorganic oxidation products in polluted regions, especially during winter. It has been reported that chemistry-transport models underestimate sulphate concentrations, mostly during winter. Here we show that HONO can significantly enhance aerosol sulphate (S(VI)), mainly due to the increased formation of H2SO4. Even though in-cloud aqueous phase oxidation of dissolved SO2 (S(IV)) is the main source of S(VI), it appears that HONO related enhancement of H2O2 does not significantly affect sulphate because of the predominantly S(IV) limited conditions, except over eastern Asia. Nitrate is also increased via enhanced gaseous HNO3 formation and N2O5 hydrolysis on aerosol particles. Ammonium nitrate is enhanced in ammonia-rich regions but not under ammonia-limited conditions. Furthermore, particle number concentrations are also higher, accompanied by the transfer from hydrophobic to hydrophilic aerosol modes. This implies a significant impact on the particle lifetime and cloud nucleating properties. The HONO induced enhancements of all species studied are relatively strong in winter though negligible in summer. Simulating realistic HONO levels is found to improve the model-measurement agreement of sulphate aerosols, most apparent over the US. Our results underscore the importance of HONO for the atmospheric oxidizing capacity and the central role of cloud chemical processing in aerosol formation.
Publisher
Copernicus GmbH
Reference71 articles.
1. Brühl, C., Lelieveld, J., Crutzen, P. J., and Tost, H.: The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate, Atmos. Chem. Phys., 12, 1239–1253, https://doi.org/10.5194/acp-12-1239-2012, 2012. 2. Charlson, R. J., Langner, J., Rodhe, H., Leovy, C. B., and Warren, S. G.: Perturbation of the Northern Hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols, Tellus, 43AB, 152–163, 1991. 3. Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E., and Hoffman, D. J.: Climate forcing by anthropogenic aerosols, Science, 255, 422–430, 1992. 4. de Meij, A., Pozzer, A., Pringle, K. J., Tost, H., and Lelieveld, J.: EMAC model evaluation and analysis of atmospheric aerosol properties and distribution, with a focus on the Mediterranean region, Atmos. Res., 114–115, 38–69, https://doi.org/10.1016/j.atmosres.2012.05.014, 2012. 5. Dennis, R. L., Mchenry, J. N., and Barchet, W. R.: Correcting RADM's sulfate underprediction: Discovery and correction of model errors and testing the corrections through comparisons against field data, Atmos. Environ., 27A, 975–997, https://doi.org/10.1016/0960-1686(93)90012-N, 1993.
|
|