Ozone photochemistry in an oil and natural gas extraction region during winter: simulations of a snow-free season in the Uintah Basin, Utah
Author:
Edwards P. M.ORCID, Young C. J.ORCID, Aikin K., deGouw J. A.ORCID, Dubé W. P., Geiger F., Gilman J. B., Helmig D., Holloway J. S., Kercher J., Lerner B.ORCID, Martin R., McLaren R.ORCID, Parrish D. D., Peischl J.ORCID, Roberts J. M.ORCID, Ryerson T. B., Thornton J., Warneke C., Williams E. J., Brown S. S.
Abstract
Abstract. The Uintah Basin in northeastern Utah, a region of intense oil and gas extraction, experienced ozone (O3) concentrations above levels harmful to human health for multiple days during the winters of 2009–2010 and 2010–2011. These wintertime O3 pollution episodes occur during cold, stable periods when the ground is snowcovered, and have been linked to emissions from the oil and gas extraction process. The Uintah Basin Winter Ozone Study (UBWOS) was a field intensive in early 2012, whose goal was to address current uncertainties in the chemical and physical processes that drive wintertime O3 production in regions of oil and gas development. Although elevated O3 concentrations were not observed during the winter of 2011–2012, the comprehensive set of observations tests of our understanding of O3 photochemistry in this unusual emissions environment. A box model, constrained to the observations and using the explicit Master Chemical Mechanism (MCM) V3.2 chemistry scheme, has been used to investigate the sensitivities of O3 production during UBWOS 2012. Simulations identify the O3 production photochemistry to be highly radical limited. Production of OH from O3 photolysis (through reaction of O(1D) with water vapor) contributed only 170 pptv day−1, 8% of the total primary radical source on average. Other radical sources, including the photolysis of formaldehyde (HCHO, 52%), nitrous acid (HONO, 26%), and nitryl chloride (ClNO2, 13%) were larger. O3 production was also found to be highly sensitive to aromatic volatile organic compound (VOC) concentrations, due to radical amplification reactions in the oxidation scheme of these species. Radical production was shown to be small in comparison to the emissions of nitrogen oxides (NOx), such that NOx acted as the primary radical sink. Consequently, the system was highly VOC sensitive, despite the much larger mixing ratio of total non-methane hydrocarbons (230 ppbv (2080 ppbC), 6 week average) relative to NOx (5.6 ppbv average). However, the importance of radical sources which are themselves derived from NOx emissions and chemistry, such as ClNO2 and HONO, make the response of the system to changes in NOx emissions uncertain. These box model simulations provide useful insight into the chemistry controlling winter O3 production in regions of oil and gas extraction.
Publisher
Copernicus GmbH
Reference58 articles.
1. Andersson-Skold, Y., Grennfelt, P., and Pleijel, K.: Photochemical ozone creation potentials: a study of different concepts, J. Air Waste Manage. Assoc., 42, 1152–1158, 1992. 2. Altshuller, A. P.: Production of aldehydes as primary emissions and from secondary atmospheric reactions of alkenes and alkanes during the night and early morning hours, Atmos. Environ., 27, 21–32, 1993. 3. Ammar, R., Monge, M. E., George, C., and D'Anne, B.: Photoenhanced NO2 loss on simulated urban Grime, Chem. Phys. Chem., 11, 3956–3961, 2010. 4. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006. 5. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III – gas phase reactions of inorganic halogens, Atmos. Chem. Phys., 7, 981–1191, https://doi.org/10.5194/acp-7-981-2007, 2007.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|