The global impact of the transport sectors on atmospheric aerosol: simulations for year 2000 emissions

Author:

Righi M.ORCID,Hendricks J.,Sausen R.ORCID

Abstract

Abstract. We use the EMAC-MADE global aerosol model to quantify the impact of transport emissions (land transport, shipping and aviation) on global aerosol. We consider a present-day (2000) scenario and the CMIP5 emission dataset developed in support of the IPCC Fifth Assessment Report. The model takes also into account particle number emissions, which are derived from mass emissions under different assumptions on the size distribution of particles emitted by the three transport sectors. Additional sensitivity experiments are performed to quantify the effects of the uncertainties behind such assumptions. The model simulations show that the impact of the transport sectors closely matches the emission patterns. Land transport is the most important source of black carbon pollution in USA, Europe and Arabian Peninsula. Shipping strongly contributes to aerosol sulfate concentrations along the most-traveled routes of the northern Atlantic and northern Pacific oceans, with a significant impact along the coastlines. The effect of aviation is mostly confined to the upper-troposphere (7–12 km), in the northern mid-latitudes, although significant effects are also simulated at the ground, due to the emissions from landing and take-off cycles. The transport-induced perturbations to particle number concentrations are very sensitive to the assumptions on the size distribution of emitted particles, with the largest uncertainties obtained for the land transport sector. The simulated climate impacts, due to aerosol direct and indirect effects, are strongest for the shipping sector, as a consequence of the large impact of sulfate aerosol on low marine clouds and their optical properties.

Funder

European Commission

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3