Impacts of aircraft emissions on the air quality near the ground

Author:

Lee H.ORCID,Olsen S. C.,Wuebbles D. J.,Youn D.

Abstract

Abstract. The continuing increase in demand for commercial aviation transport raises questions about the effects of resulting emissions on the environment. The purpose of this study is to investigate, using a global chemistry transport model, to what extent aviation emissions outside the boundary layer influence air quality in the boundary layer. The effects of current levels of aircraft emissions were studied through comparison of multiple simulations allowing for the separated effects of aviation emissions occurring in the low, middle and upper troposphere. We show that emissions near cruise altitudes rather than emissions during landing and take-off are responsible for most of the total odd-nitrogen (NOy), ozone (O3) and aerosol perturbations near the ground with a noticeable seasonal difference. Overall, the perturbations of these species are smaller than 1 ppb even in winter when the perturbations are greater than in summer. Based on the widely used air quality standards and uncertainty of state-of-the-art models, we conclude that aviation-induced perturbations have a negligible effect on air quality even in areas with heavy air traffic. Aviation emissions lead to a less than 1% aerosol enhancement in the boundary layer due to a slight increase in ammonium nitrate (NH4NO3) during cold seasons and a statistically insignificant aerosol perturbation in summer. In addition, statistical analysis using probability density functions, Hellinger distance, and p-value indicate that aviation emissions outside the boundary layer do not affect the occurrence of extremely high aerosol concentrations in the boundary layer. An additional sensitivity simulation assuming the doubling of surface ammonia emissions demonstrates that the aviation induced aerosol increase near the ground is highly dependent on background ammonia concentrations whose current range of uncertainty is large.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3