Variations of oxygen-18 in West Siberian precipitation during the last 50 yr

Author:

Butzin M.ORCID,Werner M.ORCID,Masson-Delmotte V.ORCID,Risi C.,Frankenberg C.,Gribanov K.,Jouzel J.,Zakharov V. I.

Abstract

Abstract. Global warming is associated with large increase in surface air temperature and precipitation in Siberia. Here, we apply the isotope-enhanced atmospheric general circulation model ECHAM5-wiso to investigate the variability of δ18O in West Siberian precipitation and the underlying mechanisms during the last fifty years, and to assess the potential of a recently opened monitoring station in Kourovka (57.04° N, 59.55° E) to successfully track large-scale water cycle and climate change in this area. Our model is constrained to atmospheric reanalysis fields to facilitate the comparison with precipitation δ18O from observations. In Russia, annual-mean model surface temperatures agree within ±1.5 °C with climatological data, while the model tends to overestimate precipitation by 10–20 mm month−1. Simulated precipitation δ18O shows a southwest to northeast decreasing pattern. The simulated annual-mean and seasonal δ18O results are in overall good agreement with observations from 15 Russian stations of the Global Network of Isotopes in Precipitation between 1970 and 2009. Annual-mean model results and measurements are highly correlated (r2~0.95) with a root mean square deviation of ±1‰. The model reproduces the seasonal variability of δ18O, which parallels the seasonal cycle of temperature, and the seasonal range from −25‰ in winter to −5‰ in summer. Analysing model results for the extended period 1960–2010, long-term increasing trends in temperature, precipitation and δ18O are detected in western Siberia. During the last 50 yr, winter temperatures have increased by 1.8 °C. Annual-mean precipitation rates have increased by 2–6 mm month−1 50 yr−1. Long-term trends of precipitation δ18O are also positive but at the detection limit (<1‰ 50 yr−1). Regional climate is characterized by strong interannual variability, which in winter is strongly related to the North Atlantic Oscillation. In ECHAM5-wiso, regional temperature is the predominant factor controlling δ18O variations on interannual to decadal time scales with slopes of about 0.5‰ °C−1. Focusing on Kourovka, the simulated evolution of temperature, δ18O and, to a smaller extent, precipitation during the last fifty years is synchronous with model results averaged over entire western Siberia, suggesting that this site will be representative to monitor future isotopic changes this region.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3