WAIS Divide ice core suggests sustained changes in the atmospheric formation pathways of sulfate and nitrate since the 19th century in the extratropical Southern Hemisphere

Author:

Sofen E. D.ORCID,Alexander B.ORCID,Steig E. J.ORCID,Thiemens M. H.,Kunasek S. A.,Amos H. M.ORCID,Schauer A. J.ORCID,Hastings M. G.,Bautista J.,Jackson T. L.,Vogel L. E.,McConnell J. R.ORCID,Pasteris D. R.,Saltzman E. S.ORCID

Abstract

Abstract. The triple-oxygen isotopic composition (Δ17O = δ17O-0.52 × δ18O) of sulfate and nitrate reflects the relative importance of their different production pathways in the atmosphere. A new record of sulfate and nitrate Δ17O spanning the last 2400 yr from the West Antarctic Ice Sheet Divide ice core project shows significant changes in both sulfate and nitrate Δ17O in the most recent 200 yr, indicating changes in their formation pathways. The sulfate Δ17O record suggests that an additional 12–18% of sulfate formation occurs via aqueous-phase production by O3, relative to that in the gas-phase in the present-day compared to the early 19th century. Nitrate Δ17O indicates a increasing importance of RO2 in NOx-cycling between the mid-19th century and present-day in the mid-to-high latitude Southern Hemisphere. The former has implications for the climate impacts of sulfate aerosol, while the latter has implications for the tropospheric O3 production rate in remote low-NOx environments. Using other ice core observations, we rule out drivers for these changes other than variability in extratropical oxidant (OH, O3, RO2, H2O2, and reactive halogens) concentrations. However, assuming OH, H2O2, and O3 are the main oxidants contributing to sulfate formation, Monte Carlo box model simulations require a large (≥ 210%) increase in the [O3]/[OH] ratio over the Southern Ocean in the early 19th century to match the sulfate Δ17O record. This unlikely scenario points to a deficiency in our understanding of sulfur chemistry and suggests other oxidants may play an important role in sulfate formation in the mid-to-high latitude marine boundary layer. The observed decrease in nitrate Δ17O since ~1860 CE is most likely due to an increased importance of RO2 over O3 in NOx-cycling and can be explained by a 48–84% decrease in the [O3]/[RO2] ratio in the extratropical Southern Hemisphere NOx-source regions.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3