Deuterium fractionation in formaldehyde photolysis: chamber experiments and RRKM theory

Author:

Nilsson E. J. K.,Schmidt J. A.ORCID,Johnson M. S.ORCID

Abstract

Abstract. While isotope effects in formaldehyde photolysis are the key link between the δD of methane emissions with the δD of atmospheric in situ hydrogen production, the mechanism and the extent of their pressure dependencies is not adequately described. The pressure dependence of the photolysis rates of the mono- and di-deuterated formaldehyde isotopologues HDCO and D2CO relative to the parent isotopologue H2CO was investigated using RRKM theory and experiment. D2CO and H2CO were photolysed in a static reaction chamber at bath gas pressures of 50, 200, 400, 600 and 1000 mbar; these experiments compliment and extend our earlier work with HDCO vs. H2CO. The UV lamps used for photolysis emit light at wavelengths that mainly dissociate formaldehyde into molecular products, CO and H2 or D2. A model was constructed using RRKM theory to calculate the lifetime of excited formaldehyde on the S0 surface to describe the observed pressure dependent photolytic fractionation of deuterium. The effect of deuteration on the RRKM lifetime of the S0 state is not the main cause of the experimentally observed isotope effect. We propose that there is an additional previously unrecognised isotopic fractionation in the rate of transfer of population from the initially excited S1 state onto the S0 surface.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3