Understanding atmospheric mercury speciation and mercury in snow over time at Alert, Canada

Author:

Steffen A.,Bottenheim J.,Cole A.ORCID,Ebinghaus R.,Lawson G.,Leaitch W. R.

Abstract

Abstract. Ten years of atmospheric mercury speciation data and 14 yr of mercury in snow data from Alert, Nunavut, Canada are examined. The speciation data, collected from 2002 to 2011, includes gaseous elemental mercury (GEM), particulate mercury (PHg) and reactive gaseous mercury (RGM). During the winter-spring period of atmospheric mercury depletion events (AMDEs), when GEM is close to being completely depleted from the air, the concentrations of PHg and RGM rise significantly. During this period, the median concentrations for PHg is 28.2 pg m-3 and RGM is 23.9 pg m-3 from March to June in comparison to the annual median concentrations of 11.3 and 3.2 -3 for PHg and RGM, respectively. In each of the ten years of sampling, PHg increases steadily from January through March and is higher than RGM. This pattern begins to change in April with very high levels of PHg and increasing RGM. In May, RGM transitions to be significantly higher than PHg and continues into June whereas PHg sharply drops down. The transition is thought to be driven by a combination of air temperature and particle availability. Firstly, the ratio of PHg to RGM is favoured by low temperatures suggesting that oxidized mercury may partition to available particles to form PHg. Prior to the transition, the median air temperature is −24.8 °C and after the transition the median air temperature is −5.8 °C. Secondly, high aerosol levels in the spring are a strong driver for the high PHg concentrations. In February through April, partitioning of oxidized mercury to produce PHg was favoured by increased concentrations of particles that are principally the result of Arctic Haze and some sea salts. In the snow, the concentrations of mercury peak in May for all years. The highest deposition of mercury to the snow in the spring at Alert is during and after the transition of PHg to RGM in the atmosphere.

Publisher

Copernicus GmbH

Reference41 articles.

1. Amos, H. M., Jacob, D. J., Holmes, C. D., Fisher, J. A., Wang, Q., Yantosca, R. M., Corbitt, E. S., Galarneau, E., Rutter, A. P., Gustin, M. S., Steffen, A., Schauer, J. J., Graydon, J. A., Louis, V. L. St., Talbot, R. W., Edgerton, E. S., Zhang, Y., and Sunderland, E. M.: Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition, Atmos. Chem. Phys., 12, 591–603, https://doi.org/10.5194/acp-12-591-2012, 2012.

2. Ariya, P., Skov, H., Grage, M. M.-L., and Goodsite, M. E.: Gaseous elemental mercury in the ambient atmosphere: Review of the application of theoretical calculations and experimental studies for determination of reaction coefficients and mechanisms with halogens and other reactants, Adv. Quant. Chem., 55, 43–55, https://doi.org/10.1016/S0065-3276(07)00204-3, 2008.

3. Aspmo, K., Gauchard, P.-A., Steffen, A., Temme, C., Berg, T., Bahlmann, E., Banic, C., Dommergue, A., Ebinghaus, R., Ferrari, C., Pirrone, N., Sprovieri, F., and Wibetoe, G.: Measurements of atmospheric mercury species during an international study of mercury depletion events at Ny-Alesund, Svalbard, spring 2003. How reproducible are our present methods?, Atmos. Environ., 39, 7607–7619, 2005.

4. Barrie, L. A.: Arctic air pollution: An overview of current knowledge, Atmos. Environ., 20, 643–663, 1986.

5. Barrie, L. A., Olson, M. P., and Oikawa, K. K.: The flux of anthropogenic sulphur into the arctic from mid-latitudes in 1979/80, Atmos. Environ., 23, 2505–2512, 1989.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3