New spectral functions of the near-ground albedo derived from aircraft diffraction spectrometer observations
Author:
Varotsos C. A.ORCID, Melnikova I. N., Cracknell A. P., Tzanis C.ORCID, Vasilyev A. V.
Abstract
Abstract. The airborne spectral observations of the upward and downward irradiances are revisited to investigate the dependence of the near-ground albedo as a function of wavelength in the entire solar spectrum for different surfaces (sand, water, snow) and in different conditions (clear or cloudy sky). The radiative upward and downward fluxes were determined by a diffraction spectrometer flown on a research aircraft that was performing multiple flight paths near ground. The results obtained show that the near-ground albedo does not generally increase with increasing wavelengths for all kinds of surfaces as is widely believed today. Particularly, in the case of water surfaces we found that the albedo in the ultraviolet region is more or less independent of the wavelength on a long-term basis. Interestingly, in the visible and near-infrared spectra the water albedo obeys an almost constant power-law relationship with wavelength. In the case of sand surfaces we found that the sand albedo is a quadratic function of wavelength, which becomes more accurate, if the ultraviolet wavelengths are neglected. Finally, we found that the spectral dependence of snow albedo behaves similarly to that of water, i.e. both decrease from the ultraviolet to the near-infrared wavelengths by 20–50%, despite of the fact that their values differ by one order of magnitude (water albedo being lower). In addition, the snow albedo versus ultraviolet wavelength is almost constant, while in the visible-near infrared spectrum the best simulation is achieved by a second-order polynomial, as in the case of sand, but with opposite slopes.
Publisher
Copernicus GmbH
Reference40 articles.
1. Alexandris, D., Varotsos, C., Kondratyev, K. Y., and Chronopoulos, G.: On the altitude dependence of solar effective UV, Phys. Chem. Earth PT C, 24, 515–517, 1999. 2. Boucher, O.: On aerosol direct shortwave forcing and the Henyey–Greenstein phase function, J. Atmos. Sci., 55, 128–134, 1998. 3. Brandt, R. E., Warren, S. G., and Clarke, A. D.: A controlled snowmaking experiment testing the relation between black carbon content and reduction of snow albedo, J. Geophys. Res., 116, D08109, https://doi.org/10.1029/2010JD015330, 2011. 4. Cescatti, A., Marcolla, B., Vannan, S. K. S., Pan, J. Y., Román, M. O., Yang, X., Ciais, P., Cook, R. B., Law, B. E., Matteucci, G., Migliavacca, M., Moors, E., Richardson, A. D., Seufert, G. E., and Schaaf, C. B.: Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network, Remote Sens. Environ., 121, 323–334, 2012. 5. Chattopadhyay, S. and Chattopadhyay, G.: Univariate modelling of summer-monsoon rainfall time series: comparison between ARIMA and ARNN, C. R. Geosci., 342, 100–107, 2010.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|