Comparison of ensemble Kalman filter and variational approaches for CO<sub>2</sub> data assimilation

Author:

Chatterjee A.ORCID,Michalak A. M.

Abstract

Abstract. Data assimilation (DA) approaches, such as the variational and the ensemble Kalman filter, provide a computationally efficient framework for solving the CO2 source-sink estimation problem. Unlike DA applications for weather prediction and constituent assimilation, however, the advantages and disadvantages of alternative DA approaches for CO2 flux estimation have not been extensively explored. In this study, we compare and assess estimates from two advanced DA methods (an ensemble square root filter and a variational technique) using a simple 1-dimensional advection-diffusion inverse problem that has been designed to capture the nuances of a real CO2 flux estimation problem. Experiments are specifically designed to identify the impact of the observational density, heterogeneity, and uncertainty, as well as operational constraints (i.e., ensemble size, number of descent iterations) in order to isolate the degradation in the DA estimates relative to the estimates from a batch inverse modeling scheme. No dynamical model is explicitly specified for the DA methods to keep the problem setup analogous to a real CO2 flux estimation problem. Results demonstrate that the performance of the DA approaches depends on a complex interplay between the measurement network and the operational constraints imposed to make the DA algorithms practically feasible. The overall advantages/disadvantages of the two examined DA approaches are complementary and highlight that, specifically for CO2 applications, selection of one method over the other should be dictated by the carbon science questions being asked, and the inversion conditions under which the approaches are being applied.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3