Identification of humic-like substances (HULIS) in oxygenated organic aerosols using NMR and AMS factor analyses and liquid chromatographic techniques
Author:
Paglione M.ORCID, Kiendler-Scharr A.ORCID, Mensah A. A.ORCID, Finessi E., Giulianelli L., Sandrini S.ORCID, Facchini M. C.ORCID, Fuzzi S.ORCID, Schlag P.ORCID, Piazzalunga A., Tagliavini E., Henzing J. S.ORCID, Decesari S.
Abstract
Abstract. The atmospheric organic aerosol composition is characterized by a great diversity of functional groups and chemical species challenging simple classification schemes. Traditional off-line chemical methods identified chemical classes based on the retention behavior on chromatographic columns and absorbing beds. Such approach led to the isolation of complex mixtures of compounds such as the humic-like substances (HULIS). More recently, on-line aerosol mass spectrometry (AMS) was employed to identify chemical classes by extracting fragmentation patterns from experimental data series using statistical methods (factor analysis), providing simplified schemes for oxygenated organic aerosols (OOAs) classification on the basis of the distribution of oxygen-containing functionalities. The analysis of numerous AMS datasets suggested the occurrence of very oxidized OOAs which were postulated to correspond to the HULIS. However, only a few efforts were made to test the correspondence of the AMS classes of OOAs with the traditional classification from the off-line methods. In this paper, we consider a case study representative for polluted continental regional background environments. We examine the AMS factors for OOAs identified by positive matrix factorization (PMF) and compare to chemical classes of water-soluble organic carbon (WSOC) analysed off-line on a set of filters collected in parallel. WSOC fractionation was performed by means of factor analysis applied to H-NMR spectroscopic data, and by applying an ion-exchange chromatographic method for direct quantification of HULIS. Results show that the very oxidized low-volatility OOAs from AMS correlate with the NMR factor showing HULIS features and also with true "chromatographic" HULIS. On the other hand, UV/VIS-absorbing polyacids (or HULIS sensu stricto) isolated on ion-exchange beds were only a fraction of the AMS and NMR organic carbon fractions showing functional groups attributable to highly substituted carboxylic acids, suggesting that unspeciated low-molecular weight organic acids contribute to HULIS in the broad sense.
Publisher
Copernicus GmbH
Reference86 articles.
1. Aiken, G. R.: Evaluation of ultrafiltration for determining molecular weight of fulvic acid, Environ. Sci. Technol., 18, 978–981, 1984. 2. Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Zhang, Q., Sun, Y., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: $\\chemO/\\chemC$ and $\\chemOM/\\chemOC$ ratios of primary, secondary, and ambient organic aerosols with high resolution timeof-flight aerosol mass spectrometry, Environ. Sci. Technol., 42, 4478–4485, 2008. 3. Aiken, A. C., Salcedo, D., Cubison, M. J., Huffman, J. A., DeCarlo, P. F., Ulbrich, I. M., Docherty, K. S., Sueper, D., Kimmel, J. R., Worsnop, D. R., Trimborn, A., Northway, M., Stone, E. A., Schauer, J. J., Volkamer, R. M., Fortner, E., de Foy, B., Wang, J., Laskin, A., Shutthanandan, V., Zheng, J., Zhang, R., Gaffney, J., Marley, N. A., Paredes-Miranda, G., Arnott, W. P., Molina, L. T., Sosa, G., and Jimenez, J. L.: Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) – Part 1: Fine particle composition and organic source apportionment, Atmos. Chem. Phys., 9, 6633–6653, https://doi.org/10.5194/acp-9-6633-2009, 2009. 4. Alfarra, M. R., Coe, H., Allan, J. D., Bower, K. N., Boudries, H., Canagaratna, M. R., Jimenez, J. L., Jayne, J. T., Garforth, A. A., Li, S. M., and Worsnop, D. R.: Characterization of urban and rural organic particulate in the lower Fraser valley using two Aerodyne aerosol mass spectrometers, Atmos. Environ., 38, 5745–5758, 2004. 5. Alfarra, M. R., Paulsen, D., Gysel, M., Garforth, A. A., Dommen, J., Prévôt, A. S. H., Worsnop, D. R., Baltensperger, U., and Coe, H.: A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber, Atmos. Chem. Phys., 6, 5279–5293, https://doi.org/10.5194/acp-6-5279-2006, 2006.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|