Impact of biomass burning on haze pollution in the Yangtze River Delta, China: a case study in summer 2011

Author:

Cheng Z.,Wang S.ORCID,Fu X.ORCID,Watson J. G.,Jiang J.,Fu Q.,Chen C.,Xu B.,Yu J.,Chow J. C.,Hao J.

Abstract

Abstract. Open biomass burning is an important source of air pollution in China and globally. Joint observations of air pollution were conducted in five cities (Shanghai, Hangzhou, Ningbo, Suzhou and Nanjing) of the Yangtze River Delta, and a heavy haze episode with visibility 2.9–9.8 km was observed from 28 May to 6 June 2011. The contribution of biomass burning was quantified using both ambient monitoring data and the WRF/CMAQ model simulation. It was found that the average and maximum daily PM2.5 concentrations during the episode were 82 μg m−3 and 144 μg m−3, respectively. Weather pattern analysis indicated that a stagnant process enhanced the accumulation of air pollutants, while the following precipitation process scavenged the pollution. Daily minimum mixing depth during the stagnant period was below 50 m. Both observation data and CMAQ model simulation indicated that biomass open burning contributed 37% of PM2.5, 70% of organic carbon and 61% of elemental carbon. Satellite-detected fire spots, back-trajectory analysis and air model simulation can be integrated to identify the locations where the biomasses are burned. The results also suggest that the impact of biomass open burning is regional, due to the substantial inter-province transport of air pollutants. These findings would improve the understanding of not only heavy haze and air pollution episodes, but also the emissions of such open fires.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3