Observation and modelling of HO<sub>x</sub> radicals in a boreal forest

Author:

Hens K.,Novelli A.ORCID,Martinez M.,Auld J.,Axinte R.,Bohn B.ORCID,Fischer H.,Keronen P.ORCID,Kubistin D.ORCID,Nölscher A. C.ORCID,Oswald R.,Paasonen P.ORCID,Petäjä T.ORCID,Regelin E.,Sander R.ORCID,Sinha V.,Sipilä M.,Taraborrelli D.ORCID,Tatum Ernest C.,Williams J.,Lelieveld J.ORCID,Harder H.ORCID

Abstract

Abstract. Measurements of OH and HO2 radicals were conducted in a~pine dominated forest in Southern Finland during the HUMPPA-COPEC-2010 (Hyytiälä United Measurements of Photochemistry and Particles in Air – Comprehensive Organic Precursor Emission and Concentration study) field campaign in summer 2010. Simultaneous side-by-side measurements of hydroxyl radicals were conducted with two instruments using chemical ionization mass spectrometry (CIMS) and laser-induced fluorescence (LIF), indicating good agreement. Subsequently, the LIF instrument was moved to the top of a 20 m tower, just above the canopy, to investigate the radical chemistry at the ecosystem–atmosphere interface. Comprehensive measurements including observations of many VOCs and the total OH reactivity were conducted and analysed using steady-state calculations as well as an observationally constrained box model. Production rates of OH calculated from measured OH precursors are consistent with those derived from the steady state assumption and measured total OH loss under conditions of moderate OH reactivity. The primary photolytic sources of OH contribute up to one third to the total OH production. OH recycling, which occurs mainly by HO2 reacting with NO and O3, dominates the total hydroxyl radical production in this boreal forest. Box model simulations agree with measurements for hydroxyl radicals (OHmod./OHobs. = 1.04 ± 0.16), while HO2 mixing ratios are significantly underpredicted (HO2mod./HO2obs. = 0.3 ± 0.2) and simulated OH reactivity does not match the observed OH reactivity. The simultaneous underprediction of HO2 and OH reactivity in periods in which OH concentrations were simulated well, suggests that the missing OH reactivity is an unaccounted source of HO2. Detailed analysis of the HOx production, loss, and recycling pathways suggests that in periods of high total OH reactivity there are additional recycling processes forming OH directly, not via reaction of HO2 with NO or O3. Nevertheless, a major fraction of the OH recycling occurs via the reaction of HO2 with NO and O3 in this terpene dominated environment.

Publisher

Copernicus GmbH

Reference84 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3