Global ozone–CO correlations from OMI and AIRS: constraints on tropospheric ozone sources

Author:

Kim P. S.,Jacob D. J.,Liu X.,Warner J. X.,Yang K.ORCID,Chance K.ORCID

Abstract

Abstract. We present a global data set of free tropospheric ozone–CO correlations with 2° × 2.5° spatial resolution from the Ozone Monitoring Instrument (OMI) and Atmospheric Infrared Sounder (AIRS) satellite instruments for each season of 2008. OMI and AIRS have near daily global coverage of ozone and CO respectively and observe coincident scenes with similar vertical sensitivities. The resulting ozone–CO correlations are highly statistically significant (positive or negative) in most regions of the world, and are less noisy than previous satellite-based studies that used sparser data. We interpret the observed ozone–CO correlations with the GEOS-Chem chemical transport model to infer constraints on ozone sources. Driving GEOS-Chem with different meteorological fields generally shows consistent ozone–CO correlation patterns, except in some tropical regions where the correlations are strongly sensitive to model transport error associated with deep convection. GEOS-Chem reproduces the general structure of the observed ozone–CO correlations and regression slopes (dO3/dCO), although there are some large regional discrepancies. We examine the model sensitivity of dO3/dCO to different ozone sources (combustion, biosphere, stratosphere, and lightning NOx) by correlating the ozone change from that source to CO from the standard simulation. The model reproduces the observed positive dO3/dCO in the extratropical Northern Hemisphere in spring–summer, driven by combustion sources. Stratospheric influence there is also associated with a positive dO3/dCO because of the interweaving of stratospheric downwelling with continental outflow. The well-known ozone maximum over the tropical South Atlantic is associated with negative dO3/dCO in the observations; this feature is reproduced in GEOS-Chem and supports a dominant contribution from lightning to the ozone maximum. A~major model discrepancy is found over the Northeast Pacific in summer-fall where dO3/dCO is positive in the observations but negative in the model, for all ozone sources. We suggest that this reflects a model overestimate of lightning at northern mid-latitudes combined with an underestimate of the East Asian CO source.

Publisher

Copernicus GmbH

Reference79 articles.

1. Andreae, M. O., Anderson, B. E., Blake, D. R., Bradshaw, J. D., Collins, J. E., Gregory, G. L., Sachse, G. W., and Shipham, M. C.: Influence of plumes from biomass burning on atmospheric chemistry over the equatorial and tropical South Atlantic during CITE 3, J. Geophys. Res., 99, 12793–12808, https://doi.org/10.1029/94JD00263, 1994.

2. Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, K. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., Staelin, D. H., Strow, L. L., and Susskind, J.: AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems, IEEE T. Geosci. Remote, 41, 253–264, https://doi.org/10.1109/TGRS.2002.808356, 2003.

3. Baray, J.-L., Duflot, V., Posny, F., Cammas, J.-P., Thompson, A. M., Gabarrot, F., Bonne, J.-L., and Zeng, G.: One year ozonesonde measurements at Kerguelen Island (49.2{\\degree} S, 70.1{\\degree} E): influence of stratosphere-to-troposphere exchange and long-range transport of biomass burning plumes, J. Geophys. Res., 117, D06305, https://doi.org/10.1029/2011JD016717, 2012.

4. Beer, R., Glavich, T. A., and Rider, D. M.: Tropospheric emission spectrometer for the Earth Observing System's Aura satellites, Appl. Optics, 40, 2356–2367, https://doi.org/10.1364/AO.40.002356, 2001.

5. Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B., Fiore, A. M., Li, Q., Liu, H., Mickley, L. J., and Schultz, M.: Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation, J. Geophys. Res., 106, 23073–23096, https://doi.org/10.1029/2001JD000807, 2001.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3