Reduced efficacy of marine cloud brightening geoengineering due to in-plume aerosol coagulation: parameterization and global implications

Author:

Stuart G. S.,Stevens R. G.ORCID,Partanen A.-I.ORCID,Jenkins A. K. L.,Korhonen H.ORCID,Forster P. M.ORCID,Spracklen D. V.,Pierce J. R.ORCID

Abstract

Abstract. The intentional enhancement of cloud albedo via controlled sea-spray injection from ships (Marine Cloud Brightening) has been proposed as a possible method to control anthropogenic global warming; however, there remains significant uncertainty in the efficacy of this method due to, amongst other factors, uncertainties in aerosol and cloud microphysics. A major assumption used in recent cloud- and climate-modeling studies is that all sea spray was emitted uniformly into some oceanic grid boxes, and thus these studies did not account for sub-grid aerosol coagulation within the sea-spray plumes. We explore the evolution of these sea-salt plumes using a multi-shelled Gaussian plume model with size-resolved aerosol coagulation. We determine how the final number of particles depends on meteorological conditions, including wind speed and boundary-layer stability, as well as the emission rate and size distribution of aerosol emitted. Under previously proposed injection rates and typical marine conditions, we find that the number of aerosol particles is reduced by over 50%, but this reduction varies from under 10% to over 90% depending on the conditions. We provide a computationally efficient parameterization for cloud-resolving and global-scale models to account for sub-grid scale coagulation, and we implement this parameterization in a global-scale aerosol-climate model. We find that accounting for this sub-grid scale coagulation reduces cloud droplet number concentrations by 46% over emission regions, and reduces the global mean radiative flux perturbation from −1.5 W m-2 to −0.8 W m-2.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modelling artificial sea salt emission in large eddy simulations;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2014-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3