Deuterium excess as a proxy for continental moisture recycling and plant transpiration

Author:

Aemisegger F.,Pfahl S.ORCID,Sodemann H.ORCID,Lehner I.,Seneviratne S. I.ORCID,Wernli H.ORCID

Abstract

Abstract. Studying the evaporation process and its link to the atmospheric circulation is central for a better understanding of the feedbacks between the surface water components and the atmosphere. Stable water isotopes are ideal tools to investigate surface evaporation as they are naturally available tracers of water phase changes in the atmosphere. The strength of isotope fractionation processes depends on environmental conditions such as relative humidity and temperature. In this study, we use five months of deuterium excess (d) measurements at the hourly to daily timescale from a cavity ring-down laser spectrometer to characterise the evaporation source of low-level continental water vapour at the long-term hydrometeorological monitoring site Rietholzbach in northeastern Switzerland. To reconstruct the phase change history of the air masses in which we measure the d signature and to diagnose its area of surface evaporation we apply an established Lagrangian moisture source diagnostic. With the help of a correlation analysis we investigate the strength of the relation between d measurements and the moisture source conditions. Temporal episodes with a duration of a few days of strong anticorrelation between d and relative humidity as well as temperature are identified. The role of plant transpiration, the large-scale advection of remotely evaporated moisture, the local boundary layer dynamics at the measurement site and recent precipitation at the site of evaporation are discussed as reasons for the existence of these modes of strong anticorrelation between d and moisture source conditions. The relation between d in atmospheric water vapour at the measurement site and the relative humidity conditions at the location of evaporation exhibits distinct characteristics for land surface evaporation and ocean evaporation. We show that the importance of continental moisture recycling and the contribution of plant transpiration to the continental evaporation flux can be deduced from the d-relative humidity relation at the seasonal timescale as well as for individual events. The slope of the relation between d and the diagnosed moisture source relative humidity provides a novel framework to estimate the transpiration fraction of land evapotranspiration at the local to continental scale. Over the whole analysis period (August to December 2011) a transpiration fraction of the evapotranspiration flux over the continental part of the moisture source region of 63% is found albeit with a large event-to-event variability (0% to 99%) for continental Europe. During days of strong local moisture recycling a higher overall transpiration fraction of 82% (varying between 65% and 94%) is found. Such Lagrangian estimates of the transpiration part of continental evaporation could potentially be useful for the verification of model estimates of this important land-atmosphere coupling parameter.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3