Identifying climatic drivers of tropical forest dynamics
-
Published:2015-10-01
Issue:19
Volume:12
Page:5583-5596
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Aubry-Kientz M.,Rossi V.,Wagner F.,Hérault B.
Abstract
Abstract. In the context of climate change, identifying and then predicting the impacts of climatic drivers on tropical forest dynamics is becoming a matter of urgency. To look at these climate impacts, we used a coupled model of tropical tree growth and mortality, calibrated with forest dynamic data from the 20-year study site of Paracou, French Guiana, in order to introduce and test a set of climatic variables. Three major climatic drivers were identified through the variable selection procedure: drought, water saturation and temperature. Drought decreased annual growth and mortality rates, high precipitation increased mortality rates and high temperature decreased growth. Interactions between key functional traits, stature and climatic variables were investigated, showing best resistance to drought for trees with high wood density and for trees with small current diameters. Our results highlighted strong long-term impacts of climate variables on tropical forest dynamics, suggesting potential deep impacts of climate changes during the next century.
Funder
Agence Nationale de la Recherche
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference52 articles.
1. Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. T. H., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H. H., Allard, G., Running, S. W., Semerci, A., and Cobb, N.: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests, Forest Ecol. Manag., 259, 660–684, https://doi.org/10.1016/j.foreco.2009.09.001, 2010. 2. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements – FAO Irrigation and drainage paper 56, 1–15, 1998. 3. Aragão, L. E. O. C., Malhi, Y., Roman-Cuesta, R. M., Saatchi, S., Anderson, L. O., and Shimabukuro, Y. E.: Spatial patterns and fire response of recent Amazonian droughts, Geophys. Res. Lett., 34, L07701, https://doi.org/10.1029/2006GL028946, 2007. 4. Aubry-Kientz, M., Hérault, B., Ayotte-Trépanier, C., Baraloto, C., and Rossi, V.: Toward trait-based mortality models for tropical forests., PloS One, 8, e63678, https://doi.org/10.1371/journal.pone.0063678, 2013. 5. Aubry-Kientz, M., Rossi, V., Boreux, J.-J., and Hérault, B.: A joint individual-based model coupling growth and mortality reveals that tree vigor is a key component of tropical forest dynamics, Ecol. Evolut., 5, 2457–2465, https://doi.org/10.1002/ece3.1532, 2015.
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|