Atmospheric deposition fluxes over the Atlantic Ocean: a GEOTRACES case study
-
Published:2019-04-11
Issue:7
Volume:16
Page:1525-1542
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Menzel Barraqueta Jan-LukasORCID, Klar Jessica K., Gledhill Martha, Schlosser ChristianORCID, Shelley RachelORCID, Planquette Hélène F., Wenzel BernhardORCID, Sarthou Geraldine, Achterberg Eric P.
Abstract
Abstract. Atmospheric deposition is an important source of micronutrients to the
ocean, but atmospheric deposition fluxes remain poorly constrained in most
ocean regions due to the limited number of field observations of wet and dry
atmospheric inputs. Here we present the distribution of dissolved aluminium
(dAl), as a tracer of atmospheric inputs, in surface waters of the Atlantic
Ocean along GEOTRACES sections GA01, GA06, GA08, and GA10. We used the
surface mixed-layer concentrations of dAl to calculate atmospheric
deposition fluxes using a simple steady state model. We have optimized the
Al fractional aerosol solubility, the dAl residence time within the surface
mixed layer and the depth of the surface mixed layer for each separate cruise to
calculate the atmospheric deposition fluxes. We calculated the lowest
deposition fluxes of 0.15±0.1 and 0.27±0.13 g m−2 yr−1
for the South and North Atlantic Ocean (>40∘ S and >40∘ N) respectively, and the highest fluxes of 1.8
and 3.09 g m−2 yr−1 for the south-east Atlantic and tropical
Atlantic Ocean, respectively. Overall, our estimations are comparable to
atmospheric dust deposition model estimates and reported field-based
atmospheric deposition estimates. We note that our estimates diverge from
atmospheric dust deposition model flux estimates in regions influenced by
riverine Al inputs and in upwelling regions. As dAl is a key trace element
in the GEOTRACES programme, the approach presented in this study allows
calculations of atmospheric deposition fluxes at high spatial resolution for
remote ocean regions.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference102 articles.
1. Achterberg, E. P., Moore, C. M., Henson, S. A., Steigenberger, S., Stohl, A.,
Eckhardt, S., Avendano, L. C., Cassidy, M., Hembury, D., and Klar, J. K.:
Natural iron fertilization by the Eyjafjallajökull volcanic eruption,
Geophys. Res. Lett., 40, 921–926, 2013. 2. Aguilar-Islas, A. M., Wu, J., Rember, R., Johansen, A. M., and Shank, L. M.:
Dissolution of aerosol-derived iron in seawater: Leach solution chemistry,
aerosol type, and colloidal iron fraction, Mar. Chem., 120, 25–33, 2010. 3. Anderson, R. F., Cheng, H., Edwards, R. L., Fleisher, M. Q., Hayes, C. T.,
Huang, K.-F., Kadko, D., Lam, P. J., Landing, W. M., Lao, Y., Lu, Y.,
Measures, C. I., Moran, S. B., Morton, P. L., Ohnemus, D. C., Robinson, L.
F., and Shelley, R. U.: How well can we quantify dust deposition to the
ocean?, Philos. T. R. Soc A, 374, https://doi.org/10.1098/rsta.2015.0285, 2016. 4. Baker, A., Adams, C., Bell, T., Jickells, T., and Ganzeveld, L.: Estimation
of atmospheric nutrient inputs to the Atlantic Ocean from 50∘ N to
50∘ S based on large-scale field sampling: Iron and other
dust-associated elements, Global Biogeochem. Cy., 27, 755–767, 2013. 5. Baker, A. R. and Croot, P. L.: Atmospheric and marine controls on aerosol
iron solubility in seawater, Mar. Chem., 120, 4–13, 2010.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|